2 resultados para dynamic time warping (DTW)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.
Resumo:
In today's fast-paced and interconnected digital world, the data generated by an increasing number of applications is being modeled as dynamic graphs. The graph structure encodes relationships among data items, while the structural changes to the graphs as well as the continuous stream of information produced by the entities in these graphs make them dynamic in nature. Examples include social networks where users post status updates, images, videos, etc.; phone call networks where nodes may send text messages or place phone calls; road traffic networks where the traffic behavior of the road segments changes constantly, and so on. There is a tremendous value in storing, managing, and analyzing such dynamic graphs and deriving meaningful insights in real-time. However, a majority of the work in graph analytics assumes a static setting, and there is a lack of systematic study of the various dynamic scenarios, the complexity they impose on the analysis tasks, and the challenges in building efficient systems that can support such tasks at a large scale. In this dissertation, I design a unified streaming graph data management framework, and develop prototype systems to support increasingly complex tasks on dynamic graphs. In the first part, I focus on the management and querying of distributed graph data. I develop a hybrid replication policy that monitors the read-write frequencies of the nodes to decide dynamically what data to replicate, and whether to do eager or lazy replication in order to minimize network communication and support low-latency querying. In the second part, I study parallel execution of continuous neighborhood-driven aggregates, where each node aggregates the information generated in its neighborhoods. I build my system around the notion of an aggregation overlay graph, a pre-compiled data structure that enables sharing of partial aggregates across different queries, and also allows partial pre-computation of the aggregates to minimize the query latencies and increase throughput. Finally, I extend the framework to support continuous detection and analysis of activity-based subgraphs, where subgraphs could be specified using both graph structure as well as activity conditions on the nodes. The query specification tasks in my system are expressed using a set of active structural primitives, which allows the query evaluator to use a set of novel optimization techniques, thereby achieving high throughput. Overall, in this dissertation, I define and investigate a set of novel tasks on dynamic graphs, design scalable optimization techniques, build prototype systems, and show the effectiveness of the proposed techniques through extensive evaluation using large-scale real and synthetic datasets.