2 resultados para dynamic and static collection

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify the strengths and strategies that undocumented college students from Central America used to access and persist in United States higher education. A multiple-case study design was used to conduct in-depth, semi-structured interviews and document collection from ten persons residing in Illinois, Maryland, Ohio, Texas, and Washington. Yosso’s (2005, 2006) community cultural wealth conceptual framework, an analytical and methodological tool, was used to uncover assets used to navigate the higher education system. The findings revealed that participants activated all forms of capital, with cultural capital being the least activated yet necessary, to access and persist in college. Participants also activated most forms of capital together or consecutively in order to attain financial resources, information and social networks that facilitated college access. Participants successfully persisted because they continued to activate forms of capital, displayed a high sense of agency, and managed to sustain college educational goals despite challenges and other external factors. The relationships among forms of capital and federal, state, and institutional policy contexts, which positively influenced both college access and persistence were not illustrated in Yosso’s (2005, 2006) community cultural wealth framework. Therefore, this study presents a modified community cultural wealth framework, which includes these intersections and contexts. In the spirit of Latina/o critical race theory (LatCrit) and critical race theory (CRT), the participants share with other undocumented students suggestions on how to succeed in college. This study can contribute to the growing research of undocumented college students, and develop higher education policy and practice that intentionally consider undocumented college students’ strengths to successfully navigate the institution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Graphical User Interface (GUI) is an integral component of contemporary computer software. A stable and reliable GUI is necessary for correct functioning of software applications. Comprehensive verification of the GUI is a routine part of most software development life-cycles. The input space of a GUI is typically large, making exhaustive verification difficult. GUI defects are often revealed by exercising parts of the GUI that interact with each other. It is challenging for a verification method to drive the GUI into states that might contain defects. In recent years, model-based methods, that target specific GUI interactions, have been developed. These methods create a formal model of the GUI’s input space from specification of the GUI, visible GUI behaviors and static analysis of the GUI’s program-code. GUIs are typically dynamic in nature, whose user-visible state is guided by underlying program-code and dynamic program-state. This research extends existing model-based GUI testing techniques by modelling interactions between the visible GUI of a GUI-based software and its underlying program-code. The new model is able to, efficiently and effectively, test the GUI in ways that were not possible using existing methods. The thesis is this: Long, useful GUI testcases can be created by examining the interactions between the GUI, of a GUI-based application, and its program-code. To explore this thesis, a model-based GUI testing approach is formulated and evaluated. In this approach, program-code level interactions between GUI event handlers will be examined, modelled and deployed for constructing long GUI testcases. These testcases are able to drive the GUI into states that were not possible using existing models. Implementation and evaluation has been conducted using GUITAR, a fully-automated, open-source GUI testing framework.