3 resultados para double well

em DRUM (Digital Repository at the University of Maryland)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of quantum degenerate gases has many applications in topics such as condensed matter dynamics, precision measurements and quantum phase transitions. We built an apparatus to create 87Rb Bose-Einstein condensates (BECs) and generated, via optical and magnetic interactions, novel quantum systems in which we studied the contained phase transitions. For our first experiment we quenched multi-spin component BECs from a miscible to dynamically unstable immiscible state. The transition rapidly drives any spin fluctuations with a coherent growth process driving the formation of numerous spin polarized domains. At much longer times these domains coarsen as the system approaches equilibrium. For our second experiment we explored the magnetic phases present in a spin-1 spin-orbit coupled BEC and the contained quantum phase transitions. We observed ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling’s explicit locking between spin and motion. These two phases are separated by a critical curve containing both first-order and second-order transitions joined at a critical point. The narrow first-order transition gives rise to long-lived metastable states. For our third experiment we prepared independent BECs in a double-well potential, with an artificial magnetic field between the BECs. We transitioned to a single BEC by lowering the barrier while expanding the region of artificial field to cover the resulting single BEC. We compared the vortex distribution nucleated via conventional dynamics to those produced by our procedure, showing our dynamical process populates vortices much more rapidly and in larger number than conventional nucleation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the double bass in Vienna during the eighteenth century evolved significantly between 1760 and 1812. During these years, Viennese composers began to view the double bass less as an accompanimental instrument and more as a solo voice. Despite the abundance of music written for the double bass during this time, few of these compositions are regularly performed today. This dissertation serves three purposes. I explore how learning eighteenth-century Viennese compositions in the original tuning can influence modern performances of these works. Secondly, I document the arrangement of a lesser-know work for the modern tuned bass using the manuscript as the source material. Finally, by performing a variety of eighteenth-century bass works, I bring this music to the public's attention. The research for this dissertation has been presented in two forms. The recitals present both solo and chamber works from eighteenth-century Vienna. The repertoire for the three recitals was chosen so that each recital addresses one of the three purposes mentioned above. The research paper presents performance practices of the eighteenth century, challenges the modern double bassist faces when playing this literature, as well as a look into how to arrange one of these works for the modern tuned double bass. The three recitals were performed on the campus of the University of Maryland in the Leah M. Smith Hall, Gildenhorn Recital Hall and the Ulrich Recital Hall, respectively. Recordings of all three recitals can be found in the Digital Repository at the University of Maryland (DRUM).