2 resultados para diurnal and nocturnal feeding
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.
Resumo:
Males of many insect species feed their partner during courtship and mating. Studies of male nutrient donation in various systems have established that nuptial feeding has evolved mostly through sexual selection. Although there is extensive diversity in form, the function of nuptial gifts is typically limited to either facilitating copulation or increasing ejaculate transfer, depending on the time at which the gift is consumed by females. Unlike other insects, the Hawaiian swordtail cricket Laupala (Gryllidae: Trigonidiinae) exhibits serial transfer of nuptial gifts. Males transfer multiple spermless 'micro' spermatophores over several hours before mating at the end of the day (i.e. before the transfer of a single sperm-containing 'macro' spermatophore). By experimental manipulation of male microspermatophore donation, I tested several hypotheses pertaining to the adaptive significance of nuptial gifts in this system. I found that microspermatophore transfer improves insemination, by causing the female reproductive tract to take in more sperm. This result reveals a previously undocumented function for premating nuptial gift donation among insects. Enhanced sperm transfer due to microspermatophore donation may represent male manipulation or an internal mechanism of post-copulatory choice by females. I also performed experimental manipulation of male photoperiod to investigate how time and gender influence nuptial gift production and mating behavior. I found that the timing of mating is limited in males but not females and that the time of pair formation has consequences for the degree of nuptial gift donation, which suggests that both mating timing and microspermatophore number is important for male reproductive success. Finally, I observed the mating behavior of several trigonidiine taxa for a comparative analysis of sexual behavior and found that other genera also utilize spermless microspermatophores, which suggests that microspermatophore donation may be a common nuptial gift strategy among swordtail crickets. The elaborate nuptial feeding behavior of Hawaiian swordtail crickets prior to mating represents a newly discovered strategy to increase male insemination success rather than mating success. Based on this unexpected result, it is worth exploring whether courtship behaviors in other cricket or insect mating systems have also evolved to increase sperm uptake.