4 resultados para distribution dynamics
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.
Resumo:
Most major cities in the eastern United States have air quality deemed unhealthy by the EPA under a set of regulations known as the National Ambient Air Quality Standards (NAAQS). The worst air quality in Maryland is measured in Edgewood, MD, a small community located along the Chesapeake Bay and generally downwind of Baltimore during hot, summertime days. Direct measurements and numerical simulations were used to investigate how meteorology and chemistry conspire to create adverse levels of photochemical smog especially at this coastal location. Ozone (O3) and oxidized reactive nitrogen (NOy), a family of ozone precursors, were measured over the Chesapeake Bay during a ten day experiment in July 2011 to better understand the formation of ozone over the Bay and its impact on coastal communities such as Edgewood. Ozone over the Bay during the afternoon was 10% to 20% higher than the closest upwind ground sites. A combination of complex boundary layer dynamics, deposition rates, and unaccounted marine emissions play an integral role in the regional maximum of ozone over the Bay. The CAMx regional air quality model was assessed and enhanced through comparison with data from NASA’s 2011 DISCOVER-AQ field campaign. Comparisons show a model overestimate of NOy by +86.2% and a model underestimate of formaldehyde (HCHO) by –28.3%. I present a revised model framework that better captures these observations and the response of ozone to reductions of precursor emissions. Incremental controls on electricity generating stations will produce greater benefits for surface ozone while additional controls on mobile sources may yield less benefit because cars emit less pollution than expected. Model results also indicate that as ozone concentrations improve with decreasing anthropogenic emissions, the photochemical lifetime of tropospheric ozone increases. The lifetime of ozone lengthens because the two primary gas-phase sinks for odd oxygen (Ox ≈ NO2 + O3) – attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate – weaken with decreasing pollutant emissions. This unintended consequence of air quality regulation causes pollutants to persist longer in the atmosphere, and indicates that pollutant transport between states and countries will likely play a greater role in the future.
Resumo:
Understanding how imperfect information affects firms' investment decision helps answer important questions in economics, such as how we may better measure economic uncertainty; how firms' forecasts would affect their decision-making when their beliefs are not backed by economic fundamentals; and how important are the business cycle impacts of changes in firms' productivity uncertainty in an environment of incomplete information. This dissertation provides a synthetic answer to all these questions, both empirically and theoretically. The first chapter, provides empirical evidence to demonstrate that survey-based forecast dispersion identifies a distinctive type of second moment shocks different from the canonical volatility shocks to productivity, i.e. uncertainty shocks. Such forecast disagreement disturbances can affect the distribution of firm-level beliefs regardless of whether or not belief changes are backed by changes in economic fundamentals. At the aggregate level, innovations that increase the dispersion of firms' forecasts lead to persistent declines in aggregate investment and output, which are followed by a slow recovery. On the contrary, the larger dispersion of future firm-specific productivity innovations, the standard way to measure economic uncertainty, delivers the ``wait and see" effect, such that aggregate investment experiences a sharp decline, followed by a quick rebound, and then overshoots. At the firm level, data uncovers that more productive firms increase investments given rises in productivity dispersion for the future, whereas investments drop when firms disagree more about the well-being of their future business conditions. These findings challenge the view that the dispersion of the firms' heterogeneous beliefs captures the concept of economic uncertainty, defined by a model of uncertainty shocks. The second chapter presents a general equilibrium model of heterogeneous firms subject to the real productivity uncertainty shocks and informational disagreement shocks. As firms cannot perfectly disentangle aggregate from idiosyncratic productivity because of imperfect information, information quality thus drives the wedge of difference between the unobserved productivity fundamentals, and the firms' beliefs about how productive they are. Distribution of the firms' beliefs is no longer perfectly aligned with the distribution of firm-level productivity across firms. This model not only explains why, at the macro and micro level, disagreement shocks are different from uncertainty shocks, as documented in Chapter 1, but helps reconcile a key challenge faced by the standard framework to study economic uncertainty: a trade-off between sizable business cycle effects due to changes in uncertainty, and the right amount of pro-cyclicality of firm-level investment rate dispersion, as measured by its correlation with the output cycles.
Resumo:
Cells adapt to their changing world by sensing environmental cues and responding appropriately. This is made possible by complex cascades of biochemical signals that originate at the cell membrane. In the last decade it has become apparent that the origin of these signals can also arise from physical cues in the environment. Our motivation is to investigate the role of physical factors in the cellular response of the B lymphocyte. B cells patrol the body for signs of invading pathogens in the form of antigen on the surface of antigen presenting cells. Binding of antigen with surface proteins initiates biochemical signaling essential to the immune response. Once contact is made, the B cell spreads on the surface of the antigen presenting cell in order to gather as much antigen as possible. The physical mechanisms that govern this process are unexplored. In this research, we examine the role of the physical parameters of antigen mobility and cell surface topography on B cell spreading and activation. Both physical parameters are biologically relevant as immunogens for vaccine design, which can provide laterally mobile and immobile antigens and topographical surfaces. Another physical parameter that influences B cell response and the formation of the cell-cell junction is surface topography. This is biologically relevant as antigen presenting cells have highly convoluted membranes, resulting in variable topography. We found that B cell activation required the formation of antigen-receptor clusters and their translocation within the attachment plane. We showed that cells which failed to achieve these mobile clusters due to prohibited ligand mobility were much less activation competent. To investigate the effect of topography, we use nano- and micro-patterned substrates, on which B cells were allowed to spread and become activated. We found that B cell spreading, actin dynamics, B cell receptor distribution and calcium signaling are dependent on the topographical patterning of the substrate. A quantitative understanding of cellular response to physical parameters is essential to uncover the fundamental mechanisms that drive B cell activation. The results of this research are highly applicable to the field of vaccine development and therapies for autoimmune diseases. Our studies of the physical aspects of lymphocyte activation will reveal the role these factors play in immunity, thus enabling their optimization for biological function and potentially enabling the production of more effective vaccines.