5 resultados para digital signal processor
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.
Resumo:
Recent popularity of the IEEE 802.11b Wireless Local Area Networks (WLANs) in a host of current-day applications has instigated a suite of research challenges. The 802.11b WLANs are highly reliable and wide spread. In this work, we study the temporal characteristics of RSSI in the real-working environment by conducting a controlled set of experiments. Our results indicate that a significant variability in the RSSI can occur over time. Some of this variability in the RSSI may be due to systematic causes while the other component can be expressed as stochastic noise. We present an analysis of both these aspects of RSSI. We treat the moving average of the RSSI as the systematic causes and the noise as the stochastic causes. We give a reasonable estimate for the moving average to compute the noise accurately. We attribute the changes in the environment such as the movement of people and the noise associated with the NIC circuitry and the network access point as causes for this variability. We find that the results of our analysis are of primary importance to active research areas such as location determination of users in a WLAN. The techniques used in some of the RF-based WLAN location determination systems, exploit the characteristics of the RSSI presented in this work to infer the location of a wireless client in a WLAN. Thus our results form the building blocks for other users of the exact characteristics of the RSSI.
Resumo:
I examine the implications of nondisclosure in a setting where there is a credible signal as to the proprietary nature of the undisclosed information. Specifically, I investigate the market and analysts' response to firms’ application to the Securities and Exchange Commission (SEC) for a confidential treatment order (CTO), which allows firms to redact required disclosures from SEC filings when the redacted information is proprietary. I find that the market and analysts react favorably to the voluntary nondisclosure of proprietary information using the SEC confidential treatment process. Market and analysts reactions are more favorable to the redaction of information that is more likely to have proprietary value, such as information related to research and development. In addition, I show that the redacting firms experience superior accounting performance compared to their peers in the years following the redaction, consistent with the market and analysts’ response to the redaction. However, I find that analysts engage in more intense private information search in response to a CTO redaction. This finding suggests that, although a CTO redaction can signal the nature of undisclosed information, analysts believe that the signal is not fully revealing of the economic magnitude of the undisclosed information. Overall, this study’s findings indicate that a firm's willingness to submit to the CTO approval process serves as a credible signal of the proprietary nature of the withheld information. The results of this study suggest a possible role for a credible signaling channel to facilitate communication between insiders and outsiders regarding the nature of withheld information.
Resumo:
Fatigue damage in the connections of single mast arm signal support structures is one of the primary safety concerns because collapse could result from fatigue induced cracking. This type of cantilever signal support structures typically has very light damping and excessively large wind-induced vibration have been observed. Major changes related to fatigue design were made in the 2001 AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and supplemental damping devices have been shown to be promising in reducing the vibration response and thus fatigue load demand on mast arm signal support structures. The primary objective of this study is to investigate the effectiveness and optimal use of one type of damping devices termed tuned mass damper (TMD) in vibration response mitigation. Three prototype single mast arm signal support structures with 50-ft, 60-ft, and 70-ft respectively are selected for this numerical simulation study. In order to validate the finite element models for subsequent simulation study, analytical modeling of static deflection response of mast arm of the signal support structures was performed and found to be close to the numerical simulation results from beam element based finite element model. A 3-DOF dynamic model was then built using analytically derived stiffness matrix for modal analysis and time history analysis. The free vibration response and forced (harmonic) vibration response of the mast arm structures from the finite element model are observed to be in good agreement with the finite element analysis results. Furthermore, experimental test result from recent free vibration test of a full-scale 50-ft mast arm specimen in the lab is used to verify the prototype structure’s fundamental frequency and viscous damping ratio. After validating the finite element models, a series of parametric study were conducted to examine the trend and determine optimal use of tuned mass damper on the prototype single mast arm signal support structures by varying the following parameters: mass, frequency, viscous damping ratio, and location of TMD. The numerical simulation study results reveal that two parameters that influence most the vibration mitigation effectiveness of TMD on the single mast arm signal pole structures are the TMD frequency and its viscous damping ratio.