4 resultados para digital landscape
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This paper answers the question of whether a design intervention on Washington Adventist Hospital’s Takoma Park campus can combine stormwater Best Management Practices with outdoor healing spaces, to improve the health of the local creek (Sligo Creek) while creating a restorative environment for the hospital community. To improve the health of Sligo Creek, a campus-wide stormwater analysis was undertaken, in addition to an intervention-site-specific stormwater analysis, and a literature review of stormwater best management practices. To create a restorative environment, a literature review of healing gardens was undertaken, in addition to a campus-wide site analysis, to uncover the most ideally suited site to create a restorative environment.
Resumo:
This thesis will explore ideas relating to the engagement of man and nature by promoting the experiences of contemplation and fellowship. The focus will be an urban academic retreat facility to provide an escape from distraction of typical modern urban life. Set within the historic Washington D.C. neighborhood of Georgetown, Dumbarton Oaks is an active academic research institution The Institute is holistically designed; architecture integrated with its surrounding landscape The Institute selects diverse scholars to think, live, and commune within the facility and landscape for up to two years. This thesis will use the existing site, themes, and history of Dumbarton Oaks as a launching point to explore the relationship between architecture, man, and landscape. A proposal to relocate the Fellow’s residences and reorganize the western edge of the site will help reactivate this forgotten piece of the site realize its potential.
Resumo:
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous ecological functions, some of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field-validated, landscape-scale approaches for classifying wetlands based on their expected degree of connectivity with stream networks. During the 2015 water year, flow duration was recorded in non-perennial streams (n = 23) connecting forested wetlands and nearby perennial streams on the Delmarva Peninsula (Maryland, USA). Field and GIS-derived landscape metrics (indicators of catchment, wetland, non-perennial stream, and soil characteristics) were assessed as predictors of wetland-stream connectivity (duration, seasonal onset and offset dates). Connection duration was most strongly correlated with non-perennial stream geomorphology and wetland characteristics. A final GIS-based stepwise regression model (adj-R2 = 0.74, p < 0.0001) described wetland-stream connection duration as a function of catchment area, wetland area and number, and soil available water storage.
Resumo:
RNA is an underutilized target for drug discovery. Once thought to be a passive carrier of genetic information, RNA is now known to play a critical role in essentially all aspects of biology including signaling, gene regulation, catalysis, and retroviral infection. It is now well-established that RNA does not exist as a single static structure, but instead populates an ensemble of energetic minima along a free-energy landscape. Knowledge of this structural landscape has become an important goal for understanding its diverse biological functions. In this case, NMR spectroscopy has emerged as an important player in the characterization of RNA structural ensembles, with solution-state techniques accounting for almost half of deposited RNA structures in the PDB, yet the rate of RNA structure publication has been stagnant over the past decade. Several bottlenecks limit the pace of RNA structure determination by NMR: the high cost of isotopic labeling, tedious and ambiguous resonance assignment methods, and a limited database of RNA optimized pulse programs. We have addressed some of these challenges to NMR characterization of RNA structure with applications to various RNA-drug targets. These approaches will increasingly become integral to designing new therapeutics targeting RNA.