5 resultados para debts incurred

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I study how a larger party within a supply chain could use its superior knowledge about its partner, who is considered to be financially constrained, to help its partner gain access to cheap finance. In particular, I consider two scenarios: (i) Retailer intermediation in supplier finance and (ii) The Effectiveness of Supplier Buy Back Finance. In the fist chapter, I study how a large buyer could help small suppliers obtain financing for their operations. Especially in developing economies, traditional financing methods can be very costly or unavailable to such suppliers. In order to reduce channel costs, in recent years large buyers started to implement their own financing methods that intermediate between suppliers and financing institutions. In this paper, I analyze the role and efficiency of buyer intermediation in supplier financing. Building a game-theoretical model, I show that buyer intermediated financing can significantly improve supply chain performance. Using data from a large Chinese online retailer and through structural regression estimation based on the theoretical analysis, I demonstrate that buyer intermediation induces lower interest rates and wholesale prices, increases order quantities, and boosts supplier borrowing. The analysis also shows that the retailer systematically overestimates the consumer demand. Based on counterfactual analysis, I predict that the implementation of buyer intermediated financing for the online retailer in 2013 improved channel profits by 18.3%, yielding more than $68M projected savings. In the second chapter, I study a novel buy-back financing scheme employed by large manufacturers in some emerging markets. A large manufacturer can secure financing for its budget-constrained downstream partners by assuming a part of the risk for their inventory by committing to buy back some unsold units. Buy back commitment could help a small downstream party secure a bank loan and further induce a higher order quantity through better allocation of risk in the supply chain. However, such a commitment may undermine the supply chain performance as it imposes extra costs on the supplier incurred by the return of large or costly-to-handle items. I first theoretically analyze the buy-back financing contract employed by a leading Chinese automative manufacturer and some variants of this contracting scheme. In order to measure the effectiveness of buy-back financing contracts, I utilize contract and sales data from the company and structurally estimate the theoretical model. Through counterfactual analysis, I study the efficiency of various buy-back financing schemes and compare them to traditional financing methods. I find that buy-back contract agreements can improve channel efficiency significantly compared to simple contracts with no buy-back, whether the downstream retailer can secure financing on its own or not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.