2 resultados para database,range queries,outsourced data,encrypted database,security,information security,cloud security

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Title of Document: AN ANALYSIS OF THE IMPLEMENTATION AND PERCEIVED EFFECTIVENESS OF THE SCHOOLMAX FAMILY PORTAL Warren Wesley Watts, Doctor of Education, 2015 Directed By: Margaret J. McLaughlin, Ph.D. Department of Counseling, Higher Education and Special Education School districts have spent millions of dollars implementing student information systems that offer family portals with web-based access to parents and students. One of the main purposes of these systems is to improve school-to-home communication. Research has shown that when school-to-home communication is implemented effectively, parent involvement improves and student achievement increases (Epstein, 2001). The purpose of the study was to (a) understand why parents used or refrained from using the family portal and (b) determine what barriers to use might exist. To this end, this descriptive study identified the information parent users accessed in the SchoolMAX family portal, determined how frequently parents accessed the portal, and ascertained whether parents perceived an increase in communication with their children about academic matters after they began accessing the portal. Finally, the study sought to identify whether barriers existed that prevented parents from using the family portal. The inquiry employed three data sources to answer the aforementioned queries. These sources included (a) a survey sent electronically to 19,108 parents who registered online for the SchoolMAX family portal; (b) SchoolMAX portal usage data from the student information system for system usage between January 1, 2015 and June 30, 2015; and (c) a paper survey sent to 691 parents of students that had never used the SchoolMAX family portal in one elementary school, one middle school and one high school that were representative of other schools in the district. Survey results indicated that parents at all grade levels used the family portal. Usage data also confirmed that approximately 19% of the students had parents who monitored their progress through the family portal. Usage data also showed that parents were monitoring approximately 25% of students in secondary schools (6th – 12th grade) and 16% of students in elementary schools. Of the wide menu of resources available through the SchoolMAX family portal, parents used three areas most frequently: attendance, daily grades, and report cards. Approximately 70% of parents responded that their communication had improved with their children about academic matters since they started using the SchoolMAX family portal, and 90% of parents responded that the SchoolMAX family portal was an effective or somewhat effective tool. Parents also expressed interest in the addition of additional information to the SchoolMAX family portal. Specifically, the top three additions parents wanted to see included homework assignments, high stakes test scores, and graduation requirements. Parents also reported that 92% of them spoke to their children at least 2 to 3 times per week about academics. Due to the low response rate of the parent non-user survey, potential barriers to using the SchoolMAX family portal could not be addressed in this study. However, this issue may be a useful research topic in a future study. Keywords: school to home communication, student information systems, family portal, parent portal