2 resultados para coupled nonlinear Schrodinger equations

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various mechanisms have been proposed to explain extreme waves or rogue waves in an oceanic environment including directional focusing, dispersive focusing, wave-current interaction, and nonlinear modulational instability. The Benjamin-Feir instability (nonlinear modulational instability), however, is considered to be one of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrodinger equation is a well-established approximate model based on the same assumptions as required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear Schrodinger equation, including new rogue-wave type solutions are presented in the author's dissertation work. The solutions are obtained by using a predictive eigenvalue map based predictor-corrector procedure developed by the author. Features of the predictive map are explored and the influences of certain parameter variations are investigated. The solutions are rescaled to match the length scales of waves generated in a wave tank. Based on the information provided by the map and the details of physical scaling, a framework is developed that can serve as a basis for experimental investigations into a variety of extreme waves as well localizations in wave fields. To derive further fundamental insights into the complexity of extreme wave conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out on an advanced Graphic Processing Unit (GPU) based parallel computational platform. Free surface gravity wave simulations have successfully characterized water-wave dispersion in the SPH model while demonstrating extreme energy focusing and wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated wherein wave motions can be excited from either side. Focusing of several wave trains and isolated waves has been simulated. With properly chosen parameters, dispersion effects are observed causing a chirped wave train to focus and exhibit growth. By using the insights derived from the study of the nonlinear Schrodinger equation, modulational instability or self-focusing has been induced in a numerical wave tank and studied through several numerical simulations. Due to the inherent dissipative nature of SPH models, simulating persistent progressive waves can be problematic. This issue has been addressed and an observation-based solution has been provided. The efficacy of SPH in modeling wave focusing can be critical to further our understanding and predicting extreme wave phenomena through simulations. A deeper understanding of the mechanisms underlying extreme energy localization phenomena can help facilitate energy harnessing and serve as a basis to predict and mitigate the impact of energy focusing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.