3 resultados para cooperative collision warning system

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The purpose of this study was to examine how four high schools used an Early Warning Indicator Report (EWIR) to improve ninth grade promotion rates. Ninth grade on-time promotion is an early predictor of a student’s likelihood to graduate (Bornsheuer, Polonyi, Andrews, Fore, & Onwuegbuzie, 2011; Leckrone & Griffith, 2006; Roderick, Kelley-Kemple, Johnson, & Beechum, 2014; Zvoch, 2006). The analysis revealed both similarities and differences in the ways that the four schools used the EWIR. The research took place in a large urban school district in the Mid-Atlantic. Sixteen participants from four high schools and the district’s central office voluntarily participated in face-to-face interviews. The researcher utilized a qualitative case study method to examine the implementation of the EWIR system in Wyatt School District. The interview data was transcribed and analyzed, along with district documents, to identify categories in this cross case analysis. Three primary themes emerged from the data: (1) targeted school structures for EWIR implementation, (2) the EWIR identified necessary supports for students, and (3) the central office support for school staff. The findings revealed the various ways that the target schools implemented the EWIR in their buildings and the level of support that they received from the central office that aided them in using the EWIR to improve ninth grade promotion rates. Based on the findings of this study, the researcher provided a number of key recommendations: (1) Districts should provide professional development to schools to ensure that schools have the support they need to implement the EWIR successfully; (2) There should be increased accountability from the central office for schools using the EWIR to identify impactful interventions for ninth graders; and (3) The district needs to assign dedicated central office staff to support the implementation of the EWIR in high schools across the district. As schools continue to face the challenge of improving ninth grade promotion rates, effective use of an Early Warning Indicator Report is recommended to provide school and district staff with data needed to impact overall student performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system