4 resultados para continuum damage mechanics, FEM, two-scale damage model, welded structures, fatigue, inherent strain, residual stress
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.
Resumo:
The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.
Resumo:
Lithium-ion batteries provide high energy density while being compact and light-weight and are the most pervasive energy storage technology powering portable electronic devices such as smartphones, laptops, and tablet PCs. Considerable efforts have been made to develop new electrode materials with ever higher capacity, while being able to maintain long cycle life. A key challenge in those efforts has been characterizing and understanding these materials during battery operation. While it is generally accepted that the repeated strain/stress cycles play a role in long-term battery degradation, the detailed mechanisms creating these mechanical effects and the damage they create still remain unclear. Therefore, development of techniques which are capable of capturing in real time the microstructural changes and the associated stress during operation are crucial for unravelling lithium-ion battery degradation mechanisms and further improving lithium-ion battery performance. This dissertation presents the development of two microelectromechanical systems sensor platforms for in situ characterization of stress and microstructural changes in thin film lithium-ion battery electrodes, which can be leveraged as a characterization platform for advancing battery performance. First, a Fabry-Perot microelectromechanical systems sensor based in situ characterization platform is developed which allows simultaneous measurement of microstructural changes using Raman spectroscopy in parallel with qualitative stress changes via optical interferometry. Evolutions in the microstructure creating a Raman shift from 145 cm−1 to 154 cm−1 and stress in the various crystal phases in the LixV2O5 system are observed, including both reversible and irreversible phase transitions. Also, a unique way of controlling electrochemically-driven stress and stress gradient in lithium-ion battery electrodes is demonstrated using the Fabry-Perot microelectromechanical systems sensor integrated with an optical measurement setup. By stacking alternately stressed layers, the average stress in the stacked electrode is greatly reduced by 75% compared to an unmodified electrode. After 2,000 discharge-charge cycles, the stacked electrodes retain only 83% of their maximum capacity while unmodified electrodes retain 91%, illuminating the importance of the stress gradient within the electrode. Second, a buckled membrane microelectromechanical systems sensor is developed to enable in situ characterization of quantitative stress and microstructure evolutions in a V2O5 lithium-ion battery cathode by integrating atomic force microscopy and Raman spectroscopy. Using dual-mode measurements in the voltage range of the voltage range of 2.8V – 3.5V, both the induced stress (~ 40 MPa) and Raman intensity changes due to lithium cycling are observed. Upon lithium insertion, tensile stress in the V2O5 increases gradually until the α- to ε-phase and ε- to δ-phase transitions occur. The Raman intensity change at 148 cm−1 shows that the level of disorder increases during lithium insertion and progressively recovers the V2O5 lattice during lithium extraction. Results are in good agreement with the expected mechanical behavior and disorder change in V2O5, highlighting the potential of microelectromechanical systems as enabling tools for advanced scientific investigations. The work presented here will be eventually utilized for optimization of thin film battery electrode performance by achieving fundamental understanding of how stress and microstructural changes are correlated, which will also provide valuable insight into a battery performance degradation mechanism.
Resumo:
Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.