2 resultados para computer based experiments

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Children develop in a sea of reciprocal social interaction, but their brain development is predominately studied in non-interactive contexts (e.g., viewing photographs of faces). This dissertation investigated how the developing brain supports social interaction. Specifically, novel paradigms were used to target two facets of social experience—social communication and social motivation—across three studies in children and adults. In Study 1, adults listened to short vignettes—which contained no social information—that they believed to be either prerecorded or presented over an audio-feed by a live social partner. Simply believing that speech was from a live social partner increased activation in the brain’s mentalizing network—a network involved in thinking about others’ thoughts. Study 2 extended this paradigm to middle childhood, a time of increasing social competence and social network complexity, as well as structural and functional social brain development. Results showed that, as in adults, regions of the mentalizing network were engaged by live speech. Taken together, these findings indicate that the mentalizing network may support the processing of interactive communicative cues across development. Given this established importance of social-interactive context, Study 3 examined children’s social motivation when they believed they were engaged in a computer-based chat with a peer. Children initiated interaction via sharing information about their likes and hobbies and received responses from the peer. Compared to a non-social control, in which children chatted with a computer, peer interaction increased activation in mentalizing regions and reward circuitry. Further, within mentalizing regions, responsivity to the peer increased with age. Thus, across all three studies, social cognitive regions associated with mentalizing supported real-time social interaction. In contrast, the specific social context appeared to influence both reward circuitry involvement and age-related changes in neural activity. Future studies should continue to examine how the brain supports interaction across varied real-world social contexts. In addition to illuminating typical development, understanding the neural bases of interaction will offer insight into social disabilities such as autism, where social difficulties are often most acute in interactive situations. Ultimately, to best capture human experience, social neuroscience ought to be embedded in the social world.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.