4 resultados para categorization IT PFC computational neuroscience model HMAX

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer vision system that has to interact in natural language needs to understand the visual appearance of interactions between objects along with the appearance of objects themselves. Relationships between objects are frequently mentioned in queries of tasks like semantic image retrieval, image captioning, visual question answering and natural language object detection. Hence, it is essential to model context between objects for solving these tasks. In the first part of this thesis, we present a technique for detecting an object mentioned in a natural language query. Specifically, we work with referring expressions which are sentences that identify a particular object instance in an image. In many referring expressions, an object is described in relation to another object using prepositions, comparative adjectives, action verbs etc. Our proposed technique can identify both the referred object and the context object mentioned in such expressions. Context is also useful for incrementally understanding scenes and videos. In the second part of this thesis, we propose techniques for searching for objects in an image and events in a video. Our proposed incremental algorithms use the context from previously explored regions to prioritize the regions to explore next. The advantage of incremental understanding is restricting the amount of computation time and/or resources spent for various detection tasks. Our first proposed technique shows how to learn context in indoor scenes in an implicit manner and use it for searching for objects. The second technique shows how explicitly written context rules of one-on-one basketball can be used to sequentially detect events in a game.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation describes two studies on macroeconomic trends and cycles. The first chapter studies the impact of Information Technology (IT) on the U.S. labor market. Over the past 30 years, employment and income shares of routine-intensive occupations have declined significantly relative to nonroutine occupations, and the overall U.S. labor income share has declined relative to capital. Furthermore, the decline of routine employment has been largely concentrated during recessions and ensuing recoveries. I build a model of unbalanced growth to assess the role of computerization and IT in driving these labor market trends and cycles. I augment a neoclassical growth model with exogenous IT progress as a form of Routine-Biased Technological Change (RBTC). I show analytically that RBTC causes the overall labor income share to follow a U-shaped time path, as the monotonic decline of routine labor share is increasingly offset by the monotonic rise of nonroutine labor share and the elasticity of substitution between the overall labor and capital declines under IT progress. Quantitatively, the model explains nearly all the divergence between routine and nonroutine labor in the period 1986-2014, as well as the mild decline of the overall labor share between 1986 and the early 2000s. However, the model with IT progress alone cannot explain the accelerated decline of labor income share after the early 2000s, suggesting that other factors, such as globalization, may have played a larger role in this period. Lastly, when nonconvex labor adjustment costs are present, the model generates a stepwise decline in routine labor hours, qualitatively consistent with the data. The timing of these trend adjustments can be significantly affected by aggregate productivity shocks and concentrated in recessions. The second chapter studies the implications of loss aversion on the business cycle dynamics of aggregate consumption and labor hours. Loss aversion refers to the fact that people are distinctively more sensitive to losses than to gains. Loss averse agents are very risk averse around the reference point and exhibit asymmetric responses to positive and negative income shocks. In an otherwise standard Real Business Cycle (RBC) model, I study loss aversion in both consumption alone and consumption-and-leisure together. My results indicate that how loss aversion affects business cycle dynamics depends critically on the nature of the reference point. If, for example, the reference point is status quo, loss aversion dramatically lowers the effective inter-temporal rate of substitution and induces excessive consumption smoothing. In contrast, if the reference point is fixed at a constant level, loss aversion generates a flat region in the decision rules and asymmetric impulse responses to technology shocks. Under a reasonable parametrization, loss aversion has the potential to generate asymmetric business cycles with deeper and more prolonged recessions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The central motif of this work is prediction and optimization in presence of multiple interacting intelligent agents. We use the phrase `intelligent agents' to imply in some sense, a `bounded rationality', the exact meaning of which varies depending on the setting. Our agents may not be `rational' in the classical game theoretic sense, in that they don't always optimize a global objective. Rather, they rely on heuristics, as is natural for human agents or even software agents operating in the real-world. Within this broad framework we study the problem of influence maximization in social networks where behavior of agents is myopic, but complication stems from the structure of interaction networks. In this setting, we generalize two well-known models and give new algorithms and hardness results for our models. Then we move on to models where the agents reason strategically but are faced with considerable uncertainty. For such games, we give a new solution concept and analyze a real-world game using out techniques. Finally, the richest model we consider is that of Network Cournot Competition which deals with strategic resource allocation in hypergraphs, where agents reason strategically and their interaction is specified indirectly via player's utility functions. For this model, we give the first equilibrium computability results. In all of the above problems, we assume that payoffs for the agents are known. However, for real-world games, getting the payoffs can be quite challenging. To this end, we also study the inverse problem of inferring payoffs, given game history. We propose and evaluate a data analytic framework and we show that it is fast and performant.