2 resultados para carbon deposition

em DRUM (Digital Repository at the University of Maryland)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electric power with high efficiency. Traditional SOFC has its disadvantages, such as redox cycling instability and carbon deposition while using hydrocarbon fuels. It is because traditional SOFC uses Ni-cermet as anode. In order to solve these problems, ceramic anode is a good candidate to replace Ni. However, the conductivity of most ceramic anode materials are much lower than Ni metal, and it introduces high ohmic resistance. How to increase the conductivity is a hot topic in this research field. Based on our proposed mechanism, several types of ceramic materials have been developed. Vanadium doped perovskite, Sr1-x/2VxTi1-xO3 (SVT) and Sr0.2Na0.8Nb1-xVxO3 (SNNV), achieved the conductivity as high as 300 S*cm-1 in hydrogen, without any high temperature reduction. GDC electrolyte supported cell was fabricated with Sr0.2Na0.8Nb0.9V0.1O3 and the performance was measured in hydrogen and methane respectively. Due to vanadium’s intrinsic problems, the anode supported cell is not easy. Fe doped double perovskite Sr2CoMoO6 (SFCM) was also developed. By carefully doping Fe, the conductivity was improved over one magnitude, without any vigorous reducing conditions. SFCM anode supported cell was successfully fabricated with GDC as the electrolyte. By impregnating Ni-GDC nano particles into the anode, the cell can be operated at lower temperatures while having higher performance than the traditional Ni-cermet cells. Meanwhile, this SFCM anode supported SOFC has long term stability in the reformate containing methane. During the anode development, cathode improvement caused by a thin Co-GDC layer was observed. By adding this Co-GDC layer between the electrolyte and the cathode, the interfacial resistance decreases due to fast oxygen ion transport. This mechanism was confirmed via isotope exchange. This Co-GDC layer works with multiple kinds of cathodes and the modified cell’s performance is 3 times as the traditional Ni-GDC cell. With this new method, lowering the SOFC operation temperature is feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.