3 resultados para body scaled information

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drawing on historical research, personal interviews, performance analysis, and my own embodied experience as a participant-observer in several clown workshops, I explore the diverse historical influences on clown theatre as it is conceived today. I then investigate how the concept of embodied knowledge is reflected in red-nose clown pedagogy. Finally, I argue that through shared embodied knowledge spectators are able to perceive and appreciate the humor of clown theatre in performance. I propose that clown theatre represents a reaction to the eroding personal connections prompted by the so-called information age, and that humor in clown theatre is a revealing index of socio-cultural values, attitudes, dispositions, and concerns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The universities rely on the Information Technology (IT) projects to support and enhance their core strategic objectives of teaching, research, and administration. The researcher’s literature review found that the level of IT funding and resources in the universities is not adequate to meet the IT demands. The universities received more IT project requests than they could execute. As such, universities must selectively fund the IT projects. The objectives of the IT projects in the universities vary. An IT project which benefits the teaching functions may not benefit the administrative functions. As such, the selection of an IT project is challenging in the universities. To aid with the IT decision making, many universities in the United States of America (USA) have formed the IT Governance (ITG) processes. ITG is an IT decision making and accountability framework whose purpose is to align the IT efforts in an organization with its strategic objectives, realize the value of the IT investments, meet the expected performance criteria, and manage the risks and the resources (Weil & Ross, 2004). ITG in the universities is relatively new, and it is not well known how the ITG processes are aiding the nonprofit universities in selecting the right IT projects, and managing the performance of these IT projects. This research adds to the body of knowledge regarding the IT project selection under the governance structure, the maturity of the IT projects, and the IT project performance in the nonprofit universities. The case study research methodology was chosen for this exploratory research. The convenience sampling was done to choose the cases from two large, research universities with decentralized colleges, and two small, centralized universities. The data were collected on nine IT projects from these four universities using the interviews and the university documents. The multi-case analysis was complemented by the Qualitative Comparative Analysis (QCA) to systematically analyze how the IT conditions lead to an outcome. This research found that the IT projects were selected in the centralized universities in a more informed manner. ITG was more authoritative in the small centralized universities; the ITG committees were formed by including the key decision makers, the decision-making roles, and responsibilities were better defined, and the frequency of ITG communication was higher. In the centralized universities, the business units and colleges brought the IT requests to ITG committees; which in turn prioritized the IT requests and allocated the funds and the resources to the IT projects. ITG committee members in the centralized universities had a higher awareness of the university-wide IT needs, and the IT projects tended to align with the strategic objectives. On the other hand, the decentralized colleges and business units in the large universities were influential and often bypassed the ITG processes. The decentralized units often chose the “pet” IT projects, and executed them within a silo, without bringing them to the attention of the ITG committees. While these IT projects met the departmental objectives, they did not always align with the university’s strategic objectives. This research found that the IT project maturity in the university could be increased by following the project management methodologies. The IT project management maturity was found higher in the IT projects executed by the centralized university, where a full-time project manager was assigned to manage the project, and the project manager had a higher expertise in the project management. The IT project executed under the guidance of the Project Management Office (PMO) has exhibited a higher project management maturity, as the PMO set the standards and controls for the project. The IT projects managed by the decentralized colleges by a part-time project manager with lower project management expertise have exhibited a lower project management maturity. The IT projects in the decentralized colleges were often managed by the business, or technical leads, who often lacked the project management expertise. This research found that higher the IT project management maturity, the better is the project performance. The IT projects with a higher maturity had a lower project delay, lower number of missed requirements, and lower number of IT system errors. This research found that the quality of IT decision in the university could be improved by centralizing the IT decision-making processes. The IT project management maturity could be improved by following the project management methodologies. The stakeholder management and communication were found critical for the success of the IT projects in the university. It is hoped that the findings from this research would help the university leaders make the strategic IT decisions, and the university’s IT project managers make the IT project decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While fault-tolerant quantum computation might still be years away, analog quantum simulators offer a way to leverage current quantum technologies to study classically intractable quantum systems. Cutting edge quantum simulators such as those utilizing ultracold atoms are beginning to study physics which surpass what is classically tractable. As the system sizes of these quantum simulators increase, there are also concurrent gains in the complexity and types of Hamiltonians which can be simulated. In this work, I describe advances toward the realization of an adaptable, tunable quantum simulator capable of surpassing classical computation. We simulate long-ranged Ising and XY spin models which can have global arbitrary transverse and longitudinal fields in addition to individual transverse fields using a linear chain of up to 24 Yb+ 171 ions confined in a linear rf Paul trap. Each qubit is encoded in the ground state hyperfine levels of an ion. Spin-spin interactions are engineered by the application of spin-dependent forces from laser fields, coupling spin to motion. Each spin can be read independently using state-dependent fluorescence. The results here add yet more tools to an ever growing quantum simulation toolbox. One of many challenges has been the coherent manipulation of individual qubits. By using a surprisingly large fourth-order Stark shifts in a clock-state qubit, we demonstrate an ability to individually manipulate spins and apply independent Hamiltonian terms, greatly increasing the range of quantum simulations which can be implemented. As quantum systems grow beyond the capability of classical numerics, a constant question is how to verify a quantum simulation. Here, I present measurements which may provide useful metrics for large system sizes and demonstrate them in a system of up to 24 ions during a classically intractable simulation. The observed values are consistent with extremely large entangled states, as much as ~95% of the system entangled. Finally, we use many of these techniques in order to generate a spin Hamiltonian which fails to thermalize during experimental time scales due to a meta-stable state which is often called prethermal. The observed prethermal state is a new form of prethermalization which arises due to long-range interactions and open boundary conditions, even in the thermodynamic limit. This prethermalization is observed in a system of up to 22 spins. We expect that system sizes can be extended up to 30 spins with only minor upgrades to the current apparatus. These results emphasize that as the technology improves, the techniques and tools developed here can potentially be used to perform simulations which will surpass the capability of even the most sophisticated classical techniques, enabling the study of a whole new regime of quantum many-body physics.