2 resultados para blood examination

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For my dissertation recital project, I traced the course of the violin-piano sonata in Austro- German in the 19th century, after Beethoven. My project presented works in three general categories. First, I presented works that are frequently-played standards of the violin sonata repertoire, works by Johannes Brahms, Franz Schubert, and Robert Schumann. The Second category is works by composers better known for their other compositions: Felix Mendelssohn and Richard Strauss. Finally, I choose the works seldom played these days, but worth of consideration, by Carl Maria von Weber and Max Reger. For my first recital, I performed Schubert's Violin Sonata, No. 1, Op. 137 in D major, Schumann's Violin Sonata, No. 1, Op. 105 in a minor, and Brahms' Violin Sonata, No.3, Op. 108 in d minor, with Naoko Takao as pianist. My second recital included works of Weber's Sonata, No. 1, Op. lob, in F major, Mendelssohn's Sonata, in F major (1838), and Schumann's Sonata, No.Z,Op.121 in d minor with Grace Cho. I concluded my final recital with the works of Reger's Violin Sonata, No. 1, Op. 1 in d minor and Strauss' Violin Sonata, Op. 18 in E flat major, Soo-Young Jung at the piano. All three programs are documented in a digital audio format available on compact disc, with accompanying programs also available in digital format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood brain barrier (BBB) is a semi-permeable membrane separating the brain from the bloodstream, preventing many drugs that treat neurological diseases, such as Alzheimer’s and Parkinson’s, from reaching the brain. Our project aimed to create a novel drug delivery system targeting the brain during neural inflammation. We developed a cationic solid lipid nanoparticle (CSLN) complex composed of cationic nanoparticles, biotin, streptavidin, and anti-vascular cell adhesion molecule-1 (anti- VCAM-1) antibodies. The anti-VCAM-1 antibody is used to target VCAM-1, a cell adhesion protein found on the BBB endothelium. VCAM-1 expression is elevated in the presence of inflammatory molecules, such as tumor necrosis factor-alpha (TNF- α). Through the use of a simple BBB model, results showed that our novel drug delivery system experienced some level of success in targeting the brain inflammation due to increasing TNF-α concentrations. This is promising for drug delivery research and provides support for VCAM-1 targeting using more robust and complex BBB models.