4 resultados para basic block reduce
em DRUM (Digital Repository at the University of Maryland)
Resumo:
With the growing demand for high-speed and high-quality short-range communication, multi-band orthogonal frequency division multiplexing ultra-wide band (MB-OFDM UWB) systems have recently garnered considerable interest in industry and in academia. To achieve a low-cost solution, highly integrated transceivers with small die area and minimum power consumption are required. The key building block of the transceiver is the frequency synthesizer. A frequency synthesizer comprised of two PLLs and one multiplexer is presented in this thesis. Ring oscillators are adopted for PLL implementation in order to drastically reduce the die area of the frequency synthesizer. The poor spectral purity appearing in the frequency synthesizers involving mixers is greatly improved in this design. Based on the specifications derived from application standards, a design methodology is presented to obtain the parameters of building blocks. As well, the simulation results are provided to verify the performance of proposed design.
Resumo:
This study, "Civil Rights on the Cell Block: Race, Reform, and Violence in Texas Prisons and the Nation, 1945-1990," offers a new perspective on the historical origins of the modern prison industrial complex, sexual violence in working-class culture, and the ways in which race shaped the prison experience. This study joins new scholarship that reperiodizes the Civil Rights era while also considering how violence and radicalism shaped the civil rights struggle. It places the criminal justice system at the heart of both an older racial order and within a prison-made civil rights movement that confronted the prison's power to deny citizenship and enforce racial hierarchies. By charting the trajectory of the civil rights movement in Texas prisons, my dissertation demonstrates how the internal struggle over rehabilitation and punishment shaped civil rights, racial formation, and the political contest between liberalism and conservatism. This dissertation offers a close case study of Texas, where the state prison system emerged as a national model for penal management. The dissertation begins with a hopeful story of reform marked by an apparently successful effort by the State of Texas to replace its notorious 1940s plantation/prison farm system with an efficient, business-oriented agricultural enterprise system. When this new system was fully operational in the 1960s, Texas garnered plaudits as a pioneering, modern, efficient, and business oriented Sun Belt state. But this reputation of competence and efficiency obfuscated the reality of a brutal system of internal prison management in which inmates acted as guards, employing coercive means to maintain control over the prisoner population. The inmates whom the prison system placed in charge also ran an internal prison economy in which money, food, human beings, reputations, favors, and sex all became commodities to be bought and sold. I analyze both how the Texas prison system managed to maintain its high external reputation for so long in the face of the internal reality and how that reputation collapsed when inmates, inspired by the Civil Rights Movement, revolted. My dissertation shows that this inmate Civil Rights rebellion was a success in forcing an end to the existing system but a failure in its attempts to make conditions in Texas prisons more humane. The new Texas prison regime, I conclude, utilized paramilitary practices, privatized prisons, and gang-related warfare to establish a new system that focused much more on law and order in the prisons than on the legal and human rights of prisoners. Placing the inmates and their struggle at the heart of the national debate over rights and "law and order" politics reveals an inter-racial social justice movement that asked the courts to reconsider how the state punished those who committed a crime while also reminding the public of the inmates' humanity and their constitutional rights.
Resumo:
Gemstone Team BREATHE (Bay Revitalization Efforts Against the Hypoxic Environment)
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.