3 resultados para auditory cues

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current trends in speech-language pathology focus on early intervention as the preferred tool for promoting the best possible outcomes in children with language disorders. Neuroimaging techniques are being studied as promising tools for flagging at-risk infants. In this study, the auditory brainstem response (ABR) to the syllables /ba/ and /ga/ was examined in 41 infants between 3 and 12 months of age as a possible tool to predict language development in toddlerhood. The MacArthur-Bates Communicative Development Inventory (MCDI) was used to assess language development at 18 months of age. The current study compared the periodicity of the responses to the stop consonants and phase differences between /ba/ and /ga/ in both at-risk and low-risk groups. The study also examined whether there are correlations among ABR measures (periodicity and phase differentiation) and language development. The study found that these measures predict language development at 18 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everyday, humans and animals navigate complex acoustic environments, where multiple sound sources overlap. Somehow, they effortlessly perform an acoustic scene analysis and extract relevant signals from background noise. Constant updating of the behavioral relevance of ambient sounds requires the representation and integration of incoming acoustical information with internal representations such as behavioral goals, expectations and memories of previous sound-meaning associations. Rapid plasticity of auditory representations may contribute to our ability to attend and focus on relevant sounds. In order to better understand how auditory representations are transformed in the brain to incorporate behavioral contextual information, we explored task-dependent plasticity in neural responses recorded at four levels of the auditory cortical processing hierarchy of ferrets: the primary auditory cortex (A1), two higher-order auditory areas (dorsal PEG and ventral-anterior PEG) and dorso-lateral frontal cortex. In one study we explored the laminar profile of rapid-task related plasticity in A1 and found that plasticity occurred at all depths, but was greatest in supragranular layers. This result suggests that rapid task-related plasticity in A1 derives primarily from intracortical modulation of neural selectivity. In two other studies we explored task-dependent plasticity in two higher-order areas of the ferret auditory cortex that may correspond to belt (secondary) and parabelt (tertiary) auditory areas. We found that representations of behaviorally-relevant sounds are progressively enhanced during performance of auditory tasks. These selective enhancement effects became progressively larger as you ascend the auditory cortical hierarchy. We also observed neuronal responses to non-auditory, task-related information (reward timing, expectations) in the parabelt area that were very similar to responses previously described in frontal cortex. These results suggests that auditory representations in the brain are transformed from the more veridical spectrotemporal information encoded in earlier auditory stages to a more abstract representation encoding sound behavioral meaning in higher-order auditory areas and dorso-lateral frontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been considerable interest in developing shape-changing soft materials for potential applications in drug delivery, microfluidics and biosensing. These shape- changing materials are inspired by the morphological changes exhibited by plants in nature, such as the Venus flytrap. One specific class of shape-change is that from a flat sheet to a folded structure (e.g., a tube). Such “self-folding” materials are usually composed of polymer hydrogels, and these typically fold in response to external stimuli such as pH and temperature. In order to develop these hydrogels for the previously described applications, it is necessary to expand the range of triggers. The focus of this dissertation is the advancement of shape-changing polymer hydrogels that are sensitive to uncommon cues such as specific biomolecules (enzymes), the substrates for such enzymes, or specific multivalent cations. First, we describe a hybrid gel that responds to the presence of low concentrations of a class of enzymes known as matrix metalloproteinases (MMPs). The hybrid gel was created by utilizing photolithographic techniques to combine two or more gels with distinct chemical composition into the same material. Certain portions of the hybrid gel are composed of a biopolymer derivative with crosslinkable groups. The hybrid gel is flat in water; however, in the presence of MMPs, the regions containing the biopolymer are degraded and the flat sheet folds to form a 3D structure. We demonstrate that hydrogels with different patterns can transform into different 3D structures such as tubes, helices and pancakes. Furthermore, this shape change can be made to occur at physiological concentrations of enzymes. Next, we report a gel with two layers that undergoes a shape change in the presence of glucose. The enzyme glucose oxidase (GOx) is immobilized in one of the layers. GOx catalyzes the conversion of glucose to gluconic acid. The production of gluconic acid decreases the local pH. The decrease in local pH causes one of the layers to swell. As a result, the flat sheet folds to form a tube. The tube unfolds to form a flat sheet when it is transferred to a solution with no glucose present. Therefore, this biomolecule- triggered shape transformation is reversible, meaning the glucose sensing gel is reusable. Furthermore, this shape change only occurs in the presence of glucose and it does not occur in the presence of other small sugars such as fructose. In our final study, we report the shape change of a gel with two layers in the presence of multivalent ions such as Ca2+ and Sr2+. The gel consists of a passive layer and an active layer. The passive layer is composed of dimethylyacrylamide (DMAA), which does not interact with multivalent ions. The active layer consists of DMAA and the biopolymer alginate. In the presence of Ca2+ ions, the alginate chains crosslink and the active layer shrinks. As a result, the gel converts from a flat sheet to a folded tube. What is particularly unusual is the direction of folding. In most cases, when flat rectangular gels fold, they do so about their short-side. However, our gels typically fold about their long-side. We hypothesize that non-homogeneous swelling determines the folding axis.