3 resultados para attitude formation and change
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.
Resumo:
Institutions are widely regarded as important, even ultimate drivers of economic growth and performance. A recent mainstream of institutional economics has concentrated on the effect of persisting, often imprecisely measured institutions and on cataclysmic events as agents of noteworthy institutional change. As a consequence, institutional change without large-scale shocks has received little attention. In this dissertation I apply a complementary, quantitative-descriptive approach that relies on measures of actually enforced institutions to study institutional persistence and change over a long time period that is undisturbed by the typically studied cataclysmic events. By placing institutional change into the center of attention one can recognize different speeds of institutional innovation and the continuous coexistence of institutional persistence and change. Specifically, I combine text mining procedures, network analysis techniques and statistical approaches to study persistence and change in England’s common law over the Industrial Revolution (1700-1865). Based on the doctrine of precedent - a peculiarity of common law systems - I construct and analyze the apparently first citation network that reflects lawmaking in England. Most strikingly, I find large-scale change in the making of English common law around the turn of the 19th century - a period free from the typically studied cataclysmic events. Within a few decades a legal innovation process with low depreciation rates (1 to 2 percent) and strong past-persistence transitioned to a present-focused innovation process with significantly higher depreciation rates (4 to 6 percent) and weak past-persistence. Comparison with U.S. Supreme Court data reveals a similar U.S. transition towards the end of the 19th century. The English and U.S. transitions appear to have unfolded in a very specific manner: a new body of law arose during the transitions and developed in a self-referential manner while the existing body of law lost influence, but remained prominent. Additional findings suggest that Parliament doubled its influence on the making of case law within the first decades after the Glorious Revolution and that England’s legal rules manifested a high degree of long-term persistence. The latter allows for the possibility that the often-noted persistence of institutional outcomes derives from the actual persistence of institutions.
Resumo:
What if the architectural process of making could incorporate time? All designers who impact the physical environment- consciously and unconsciously are gatekeepers of the past, commentators of the present, and speculators of the future. This project proposes the creation of architecture and adaptive public space that looks to historical memories, foster present day cultural formation, and new alternative visions for the city of the future. The thesis asks what it means to design for stasis and change in a variety of scales- urban, architectural, and detail and arrives at a speculated new neighborhood, institutional buildings, and landscape. Central to this project is the idea of the architect as archeologist, anthropologist, and artist. The project focuses on a rapidly changing part of the city of Fort Worth, Texas and assigns a multipurpose institutional buildings and public space as a method of investigation. The thesis hopes to further architectural discourse about into the role of architecture in the preservation of memory, adaptive potential of public spaces, and the role of time in architecture.