2 resultados para asymmetry, ground reaction forces, barrier clearance, within foot loading
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.
Resumo:
Certain environments can inhibit learning and stifle enthusiasm, while others enhance learning or stimulate curiosity. Furthermore, in a world where technological change is accelerating we could ask how might architecture connect resource abundant and resource scarce innovation environments? Innovation environments developed out of necessity within urban villages and those developed with high intention and expectation within more institutionalized settings share a framework of opportunity for addressing change through learning and education. This thesis investigates formal and informal learning environments and how architecture can stimulate curiosity, enrich learning, create common ground, and expand access to education. The reason for this thesis exploration is to better understand how architects might design inclusive environments that bring people together to build sustainable infrastructure encouraging innovation and adaptation to change for years to come. The context of this thesis is largely based on Colin McFarlane’s theory that the “city is an assemblage for learning” The socio-spatial perspective in urbanism, considers how built infrastructure and society interact. Through the urban realm, inhabitants learn to negotiate people, space, politics, and resources affecting their daily lives. The city is therefore a dynamic field of emergent possibility. This thesis uses the city as a lens through which the boundaries between informal and formal logics as well as the public and private might be blurred. Through analytical processes I have examined the environmental devices and assemblage of factors that consistently provide conditions through which learning may thrive. These parameters that make a creative space significant can help suggest the design of common ground environments through which innovation is catalyzed.