6 resultados para architectural design process

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis navigates the primary artistic concept, design process and execution of Marchlena Rodgers’ costume design for the University of Maryland’s production of Intimate Apparel. Intimate Apparel opened October 9, 2015 in the University of Maryland’s Kay Theatre. The piece was written by Lynn Nottage directed by Jennifer Nelson. The set was designed by Lydia Francis, Lighting was designed by Max Doolittle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract: New product design challenges, related to customer needs, product usage and environments, face companies when they expand their product offerings to new markets; Some of the main challenges are: the lack of quantifiable information, product experience and field data. Designing reliable products under such challenges requires flexible reliability assessment processes that can capture the variables and parameters affecting the product overall reliability and allow different design scenarios to be assessed. These challenges also suggest a mechanistic (Physics of Failure-PoF) reliability approach would be a suitable framework to be used for reliability assessment. Mechanistic Reliability recognizes the primary factors affecting design reliability. This research views the designed entity as a “system of components required to deliver specific operations”; it addresses the above mentioned challenges by; Firstly: developing a design synthesis that allows a descriptive operations/ system components relationships to be realized; Secondly: developing component’s mathematical damage models that evaluate components Time to Failure (TTF) distributions given: 1) the descriptive design model, 2) customer usage knowledge and 3) design material properties; Lastly: developing a procedure that integrates components’ damage models to assess the mechanical system’s reliability over time. Analytical and numerical simulation models were developed to capture the relationships between operations and components, the mathematical damage models and the assessment of system’s reliability. The process was able to affect the design form during the conceptual design phase by providing stress goals to meet component’s reliability target. The process was able to numerically assess the reliability of a system based on component’s mechanistic TTF distributions, besides affecting the design of the component during the design embodiment phase. The process was used to assess the reliability of an internal combustion engine manifold during design phase; results were compared to reliability field data and found to produce conservative reliability results. The research focused on mechanical systems, affected by independent mechanical failure mechanisms that are influenced by the design process. Assembly and manufacturing stresses and defects’ influences are not a focus of this research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The following thesis documents the design process and execution of Tyler Gunther’s costume design for the Theatre, Dance and Performance Studies’ production of Tartuffe. The production opened November 6, 2015 in the University of Maryland’s Kogod Theater. It was directed by Lee Mikeska Gardner with the set designed by Halea Coulter and lighting designed by Connor Dreibelbis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this thesis is to provide research, supporting paperwork, production photographs and other materials that document the scenic design process for James and the Giant Peach at Adventure Theatre MTC. This thesis contains the following: concept statement, scenic research images collected to express location, and the emotional/ intellectual/ psychological landscapes for the production, preliminary sketches, photographs of the ¼” scale model, drafting plates and supporting paint elevations to communicate the design, prop list and accompanying research, archival production photographs to document the completed design, and finally periodical reviews of the show.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this thesis is to provide research, supporting paperwork, production photographs, and other materials that document the scenic design process for the production of William Shakespeare’s Troilus & Cressida by the University of Maryland – College Park, School of Theater, Dance, and Performance Studies. This thesis contains the following: scenic research images collected to express period, location, and emotional/intellectual landscapes to the production team; preliminary sketches; photographs of the ¼” scale model; a full set of drafting plates and paint elevations used to communicate the design to the technical director and paint charge; a unit list naming each scenic element; a props list and research book to detail each hand prop, furniture piece and consumable to the prop master; and, lastly, archival production photographs to document the completed design.