2 resultados para antivirals

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Picornaviridae family consists of positive-strand RNA viruses that are the causative agents of a variety of diseases in humans and animals. Few drugs targeting picornaviruses are available, making the discovery of new antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. The antiviral effect of these compounds is not likely related to their known cellular targets because other inhibitors targeting the same pathways did not inhibit viral replication. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited the formation of a functional replication complex, while E5(1) and E7(2) affected replication after the replication complex had formed. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Poliovirus resistant to E7(2) had a single mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target either PI4KIIIβ (major enviroxime-like compounds) or OSBP (minor enviroxime-like compounds), cellular factors involved in lipid metabolism and shown to be important for replication of diverse positive-strand RNA viruses. We classified E7(2) as a minor enviroxime-like compound, because the localization of OSBP changed in the presence of this inhibitor. Interestingly, both E7(2) and major enviroxime-like compound GW5074 interfered with the viral polyprotein processing. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. Studies with these compounds shed light on pathways shared by diverse picornaviruses that could be potential targets for the development of broad-spectrum antiviral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Picornaviruses are a group of human and animal pathogens capable of inflicting serious public health diseases and economic burdens. Treatments options through vaccines for prevention or antivirals to cure infection are not available for the vast majority of these viruses. These shortcomings, in the development of vaccines or antivirals therapeutic, are linked to the genetic diversity and to an incomplete understanding of the biology of these viruses. Despite the diverse host range, this group of positive-strand RNA viruses shares the same replication mechanisms, including the development of membranous structures (replication organelles) in the cytoplasm of infected cells. The development of these membranous structures, which serve as sites for the replication of the viral RNA genome, has been linked to the hijacking of elements of the cellular membrane metabolism pathways. Here we show that upon picornavirus infection, there is a specific activation of acyl-CoA synthetase enzymes resulting in strong import and accumulation of long chain fatty acids in the cytoplasm of infected cells. We show that the newly imported fatty acids serve as a substrate for the upregulation of phosphatidylcholine synthesis required for the structural development of replication organelles. In this work, we identified that acyl-CoA synthetase long chain 3 (ACSL3) is required for the upregulation of lipids syntheses and the replication of poliovirus. We have shown that the poliovirus protein 2A was required but not sufficient for the activation of import of long chain fatty acids in infected cells. We demonstrated that the fatty acid import is upregulated upon infection by diverse picornaviruses and that such upregulation is not dependent on activation of ER stress response or the autophagy pathways. In this work, we have demonstrated that phosphatidylcholine was required for the structural development of replication organelles. Phosphatidylcholine synthesis was dispensable for the production of infectious particles at high MOI but required at a low MOI for the protection of the replication complexes from the cellular innate immunity mechanisms.