2 resultados para aluminum packaging

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.