3 resultados para active and passive quantum error correction
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Nigerian scam, also known as advance fee fraud or 419 scam, is a prevalent form of online fraudulent activity that causes financial loss to individuals and businesses. Nigerian scam has evolved from simple non-targeted email messages to more sophisticated scams targeted at users of classifieds, dating and other websites. Even though such scams are observed and reported by users frequently, the community’s understanding of Nigerian scams is limited since the scammers operate “underground”. To better understand the underground Nigerian scam ecosystem and seek effective methods to deter Nigerian scam and cybercrime in general, we conduct a series of active and passive measurement studies. Relying upon the analysis and insight gained from the measurement studies, we make four contributions: (1) we analyze the taxonomy of Nigerian scam and derive long-term trends in scams; (2) we provide an insight on Nigerian scam and cybercrime ecosystems and their underground operation; (3) we propose a payment intervention as a potential deterrent to cybercrime operation in general and evaluate its effectiveness; and (4) we offer active and passive measurement tools and techniques that enable in-depth analysis of cybercrime ecosystems and deterrence on them. We first created and analyze a repository of more than two hundred thousand user-reported scam emails, stretching from 2006 to 2014, from four major scam reporting websites. We select ten most commonly observed scam categories and tag 2,000 scam emails randomly selected from our repository. Based upon the manually tagged dataset, we train a machine learning classifier and cluster all scam emails in the repository. From the clustering result, we find a strong and sustained upward trend for targeted scams and downward trend for non-targeted scams. We then focus on two types of targeted scams: sales scams and rental scams targeted users on Craigslist. We built an automated scam data collection system and gathered large-scale sales scam emails. Using the system we posted honeypot ads on Craigslist and conversed automatically with the scammers. Through the email conversation, the system obtained additional confirmation of likely scam activities and collected additional information such as IP addresses and shipping addresses. Our analysis revealed that around 10 groups were responsible for nearly half of the over 13,000 total scam attempts we received. These groups used IP addresses and shipping addresses in both Nigeria and the U.S. We also crawled rental ads on Craigslist, identified rental scam ads amongst the large number of benign ads and conversed with the potential scammers. Through in-depth analysis of the rental scams, we found seven major scam campaigns employing various operations and monetization methods. We also found that unlike sales scammers, most rental scammers were in the U.S. The large-scale scam data and in-depth analysis provide useful insights on how to design effective deterrence techniques against cybercrime in general. We study underground DDoS-for-hire services, also known as booters, and measure the effectiveness of undermining a payment system of DDoS Services. Our analysis shows that the payment intervention can have the desired effect of limiting cybercriminals’ ability and increasing the risk of accepting payments.
Resumo:
Socioeconomic status (SES) influences language and cognitive development, with discrepancies particularly noticeable in vocabulary development. This study examines how SES-related differences impact the development of syntactic processing, cognitive inhibition, and word learning. 38 4-5-year-olds from higher- and lower-SES backgrounds completed a word-learning task, in which novel words were embedded in active and passive sentences. Critically, unlike the active sentences, all passive sentences required a syntactic revision. Measures of cognitive inhibition were obtained through a modified Stroop task. Results indicate that lower-SES participants had more difficulty using inhibitory functions to resolve conflict compared to their higher-SES counterparts. However, SES did not impact language processing, as the language outcomes were similar across SES background. Additionally, stronger inhibitory processes were related to better language outcomes in the passive sentence condition. These results suggest that cognitive inhibition impact language processing, but this function may vary across children from different SES backgrounds
Resumo:
Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.