2 resultados para actin-host- interactions
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose fitness costs of variable severity and may, in some cases, cause substantial mortality in their host populations. One example of the latter, the emergence of avian malaria in the endemic avifauna of Hawaii, has become a model for understanding the consequences of human-mediated disease introduction. The drastic declines of native Hawaiian birds due to avian malaria provided the impetus for examining more closely several aspects of host-parasite interactions in this system. Host-specificity is an important character determining the extent to which a parasite may emerge. Traditional parasite classification, however, has used host information as a character in taxonomical identification, potentially obscuring the true host range of many parasites. To improve upon previous methods, I first developed molecular tools to identify parasites infecting a particular host. I then used these molecular techniques to characterize host-specificity of parasites in the genera Plasmodium and Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity and are therefore most likely to emerge in new hosts in the future. Subsequently, I characterized the global distribution of the single lineage of P. relictum that has emerged in Hawaii. I demonstrate that this parasite has a broad host distribution worldwide, that it is likely of Old World origin and that it has been introduced to numerous islands around the world, where it may have been overlooked as a cause of decline in native birds. I also demonstrate that morphological classification of P. relictum does not capture differences among groups of parasites that appear to be reproductively isolated based on molecular evidence. Finally, I examined whether reduced immunological capacity, which has been proposed to explain the susceptibility of Hawaiian endemics, is a general feature of an "island syndrome" in isolated avifauna of the remote Pacific. I show that, over multiple time scales, changes in immune response are not uniform and that observed changes probably reflect differences in genetic diversity, parasite exposure and life history that are unique to each species.
Resumo:
This thesis aims to understand how cells coordinate their motion during collective migration. As previously shown, the motion of individually migrating cells is governed by wave-like cell shape dynamics. The mechanisms that regulate these dynamic behaviors in response to extracellular environment remain largely unclear. I applied shape dynamics analysis to Dictyostelium cells migrating in pairs and in multicellular streams and found that wave-like membrane protrusions are highly coupled between touching cells. I further characterized cell motion by using principle component analysis (PCA) to decompose complex cell shape changes into a serial shape change modes, from which I found that streaming cells exhibit localized anterior protrusion, termed front narrowing, to facilitate cell-cell coupling. I next explored cytoskeleton-based mechanisms of cell-cell coupling by measuring the dynamics of actin polymerization. Actin polymerization waves observed in individual cells were significantly suppressed in multicellular streams. Streaming cells exclusively produced F-actin at cell-cell contact regions, especially at cell fronts. I demonstrated that such restricted actin polymerization is associated with cell-cell coupling, as reducing actin polymerization with Latrunculin A leads to the assembly of F-actin at the side of streams, the decrease of front narrowing, and the decoupling of protrusion waves. My studies also suggest that collective migration is guided by cell-surface interactions. I examined the aggregation of Dictyostelim cells under distinct conditions and found that both chemical compositions of surfaces and surface-adhesion defects in cells result in altered collective migration patterns. I also investigated the shape dynamics of cells suspended on PEG-coated surfaces, which showed that coupling of protrusion waves disappears on touching suspended cells. These observations indicate that collective migration requires a balance between cell-cell and cell-surface adhesions. I hypothesized such a balance is reached via the regulation of cytoskeleton. Indeed, I found cells actively regulate cytoskeleton to retain optimal cell-surface adhesions on varying surfaces, and cells lacking the link between actin and surfaces (talin A) could not retain the optimal adhesions. On the other hand, suspended cells exhibited enhanced actin filament assembly on the periphery of cell groups instead of in cell-cell contact regions, which facilitates their aggregation in a clumping fashion.