2 resultados para Water Distribution Networks Infrastructure Health
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Over the past 15 years, the number of international development projects aimed at combating global poverty has increased significantly. Within the water and sanitation sector however, and despite heightened global attention and an increase in the number of infrastructure projects, over 800 million people remain without access to appropriate water and sanitation facilities. The majority of donor aid in the water supply and sanitation sector of developing countries is delivered through standalone projects. The quality of projects at the design and preparation stage is a critical determinant in meeting project objectives. The quality of projects at early stage of design, widely referred to as quality at entry (QAE), however remains unquantified and largely subjective. This research argues that water and sanitation infrastructure projects in the developing world tend to be designed in the absence of a specific set of actions that ensure high QAE, and consequently have relatively high rates of failure. This research analyzes 32 cases of water and sanitation infrastructure projects implemented with partial or full World Bank financing globally from 2000 – 2010. The research uses categorical data analysis, regression analysis and descriptive analysis to examine perceived linkages between project QAE and project development outcomes and determines which upstream project design factors are likely to impact the QAE of international development projects in water supply and sanitation. The research proposes a number of specific design stage actions that can be incorporated into the formal review process of water and sanitation projects financed by the World Bank or other international development partners.
Resumo:
Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.