2 resultados para Warble flies
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Calorie restriction (CR) has been established as the only non-genetic method of altering longevity and attenuating biological changes associated with aging. This nutritional paradigm has been effective in nematodes, flies, rodents, dogs and possibly non-human primates. Its long history notwithstanding, little is known regarding the exact mechanism(s) of CR action or its potential impact on the hypothalamic-pituitary-gonadal (HPG) axis. The objectives of this project were to: 1) analyze neuroendocrine changes to the HPG axis that occur with aging and 2) evaluate the effects of moderate CR on reproductive function in male rhesus macaques. Pituitary gene expression profiling, semi-quantitative RT-PCR (sqRT-PCR) and immunohistochemistry showed circadian clock mechanism components present in three age categories of macaques, demonstrated age differences in expression for Per2, indicated differential expression of Per2 and Bmal1 at opposing time points and revealed daily rhythmic expression of REV-ERBα protein. These data indicate the ability of the macaque pituitary to express core-clock genes, their protein products, and to do so in a 24-hour rhythm. Young Adult CON and CR pituitary gene expression profiles detected potential differential expression in <150 probesets. A decline in>TSHR and CGA was detected in CR macaques as measured by sqRT-PCR. Other genes investigated showed no diet-induced changes. Young Adult CON and CR testicular gene expression profiles detected potential differential expression in <300 probesets although mRNA expression was not altered based on sqRT-PCR and real-time RT-PCR. Age-related>and/or diet-induced changes in HSD17β3, INSL3, CSNK1E and CGA were observed in a separate experiment with CGA in Old Adult CR subjects returning to youthful levels. Semen samples were collected from Young Adult CON and CR macaques. Normal spermiogram measures, ZP-binding, AR assay and SCSA® were conducted and indicated no differences between CON and CR-treated animals. Both groups exhibited similar daily testosterone profiles with no differences in mean or maximum levels; however, daily minimum testosterone levels were lower in CON animals. It appears that moderate CR had limited impact on neuroendocrine or reproductive function in male rhesus macaques based on our selected endpoints. Thus, advantageous CR health benefits can be achieved without obvious negative consequences to the HPG axis.
Resumo:
Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.