1 resultado para Vernon Stauffer
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (85)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (11)
- Center for Jewish History Digital Collections (2)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Claremont University Consortium, United States (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Cornell: DigitalCommons@ILR (5)
- Digital Archives@Colby (18)
- Digital Commons - Montana Tech (4)
- Digital Commons @ Winthrop University (3)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (14)
- Harvard University (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (3)
- Institutional Repository of Leibniz University Hannover (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (7)
- Publishing Network for Geoscientific & Environmental Data (84)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (21)
- Queensland University of Technology - ePrints Archive (92)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- South Carolina State Documents Depository (2)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (1)
- University of Michigan (183)
- University of Queensland eSpace - Australia (16)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
There are hundreds of millions of songs available to the public, necessitating the use of music recommendation systems to discover new music. Currently, such systems account for only the quantitative musical elements of songs, failing to consider aspects of human perception of music and alienating the listener’s individual preferences from recommendations. Our research investigated the relationships between perceptual elements of music, represented by the MUSIC model, with computational musical features generated through The Echo Nest, to determine how a psychological representation of music preference can be incorporated into recommendation systems to embody an individual’s music preferences. Our resultant model facilitates computation of MUSIC factors using The Echo Nest features, and can potentially be integrated into recommendation systems for improved performance.