2 resultados para VORTEX-INDUCED MOTION (VIM)

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loading of spinal motion segment units alters biomechanical properties by modifying flexibility and range of motion. This study utilizes angular displacement due to an applied bending moment to assess biomechanical function during high-magnitude and prolonged compressive loading of ovine lumbar motion segments. High compressive loads, representative of physiological lifestyle and occupational behaviors, appear to limit fluid recovery of the intervertebral disc, thereby modifying spinal flexibility and increasing spinal instability. Intermittent extensions, or backwards bending movements, may provide a protective effect against the load-induced spinal instability. This study contributes a greater understanding of the effects of load history on the function and health of the lumbar spine. Findings may inform future efforts investigating adjustments in spinal posture to preserve or promote the recovery of lumbar spinal biomechanics.