3 resultados para Utilizing Xanthomonas-campestris

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The Suessiales were found to be sister to the Peridinales. The Prorocentrales formed a monophyletic group with the Dinophysiales that was sister to the Gonyaulacales. The Gymnodinales was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the efforts to better manage biosolids field application programs, biosolids managers still lack of efficient and reliable tools to apply large quantities of material while avoiding odor complaints. Objectives of this research were to determine the capabilities of an electronic nose in supporting process monitoring of biosolids production and, to compare odor characteristics of biosolids produced through thermal-hydrolysis anaerobic digestion (TH-AD) to those of alkaline stabilization in the plant, under storage and in the field. A method to quantify key odorants was developed and full scale sampling and laboratory simulations were performed. The portable electronic nose (PEN3) was tested for its capabilities of distinguishing alkali dosages in the biosolids production process. Frequency of recognition of unknown samples was tested achieving highest accuracy of 81.1%. This work exposed the need for a different and more sensitive electronic nose to assure its applicability at full scale for this process. GC-MS results were consistent with those reported in literature and helped to elucidate the behavior of the pattern recognition of the PEN3. Odor characterization of TH-AD and alkaline stabilized biosolids was achieved using olfactometry measurements and GC-MS. Dilution-to-threshold of TH-AD biosolids increased under storage conditions but no correlation was found with the target compounds. The presence of furan and three methylated homologues in TH-AD biosolids was reported for the first time proposing that these compounds are produced during thermal hydrolysis process however, additional research is needed to fully describe the formation of these compounds and the increase in odors. Alkaline stabilized biosolids reported similar odor concentration but did not increase and the ‘fishy’ odor from trimethylamine emissions resulted in more offensive and unpleasant odors when compared to TH-AD. Alkaline stabilized biosolids showed a spike in sulfur and trimethylamine after 3 days of field application when the alkali addition was not sufficient to meet regulatory standards. Concentrations of target compounds from field application of TH-AD biosolids gradually decreased to below the odor threshold after 3 days. This work increased the scientific understanding on odor characteristics and behavior of two types of biosolids and on the application of electronic noses to the environmental engineering field.