4 resultados para Urban transportation.
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Current methods for large-scale wind collection are unviable in urban areas. In order to investigate the feasibility of generating power from winds in these environments, we sought to optimize placements of small vertical-axis wind turbines in areas of artificially-generated winds. We explored both vehicular transportation and architecture as sources of artificial wind, using a combination of anemometer arrays, global positioning system (GPS), and weather report data. We determined that transportation-generated winds were not significant enough for turbine implementation. In addition, safety and administrative concerns restricted the implementation of said wind turbines along roadways for transportation-generated wind collection. Wind measurements from our architecture collection were applied in models that can help predict other similar areas with artificial wind, as well as the optimal placement of a wind turbine in those areas.
Resumo:
Travel demand models are important tools used in the analysis of transportation plans, projects, and policies. The modeling results are useful for transportation planners making transportation decisions and for policy makers developing transportation policies. Defining the level of detail (i.e., the number of roads) of the transport network in consistency with the travel demand model’s zone system is crucial to the accuracy of modeling results. However, travel demand modelers have not had tools to determine how much detail is needed in a transport network for a travel demand model. This dissertation seeks to fill this knowledge gap by (1) providing methodology to define an appropriate level of detail for a transport network in a given travel demand model; (2) implementing this methodology in a travel demand model in the Baltimore area; and (3) identifying how this methodology improves the modeling accuracy. All analyses identify the spatial resolution of the transport network has great impacts on the modeling results. For example, when compared to the observed traffic data, a very detailed network underestimates traffic congestion in the Baltimore area, while a network developed by this dissertation provides a more accurate modeling result of the traffic conditions. Through the evaluation of the impacts a new transportation project has on both networks, the differences in their analysis results point out the importance of having an appropriate level of network detail for making improved planning decisions. The results corroborate a suggested guideline concerning the development of a transport network in consistency with the travel demand model’s zone system. To conclude this dissertation, limitations are identified in data sources and methodology, based on which a plan of future studies is laid out.
Resumo:
Suburban lifestyle is popular among American families, although it has been criticized for encouraging automobile use through longer commutes, causing heavy traffic congestion, and destroying open spaces (Handy, 2005). It is a serious concern that people living in low-density suburban areas suffer from high automobile dependency and lower rates of daily physical activity, both of which result in social, environmental and health-related costs. In response to such concerns, researchers have investigated the inter-relationships between urban land-use pattern and travel behavior within the last few decades and suggested that land-use planning can play a significant role in changing travel behavior in the long-term. However, debates regarding the magnitude and efficiency of the effects of land-use on travel patterns have been contentious over the years. Changes in built-environment patterns is potentially considered a long-term panacea for automobile dependency and traffic congestion, despite some researchers arguing that the effects of land-use on travel behavior are minor, if any. It is still not clear why the estimated impact is different in urban areas and how effective a proposed land-use change/policy is in changing certain travel behavior. This knowledge gap has made it difficult for decision-makers to evaluate land-use plans and policies. In addition, little is known about the influence of the large-scale built environment. In the present dissertation, advanced spatial-statistical tools have been employed to better understand and analyze these impacts at different scales, along with analyzing transit-oriented development policy at both small and large scales. The objective of this research is to: (1) develop scalable and consistent measures of the overall physical form of metropolitan areas; (2) re-examine the effects of built-environment factors at different hierarchical scales on travel behavior, and, in particular, on vehicle miles traveled (VMT) and car ownership; and (3) investigate the effects of transit-oriented development on travel behavior. The findings show that changes in built-environment at both local and regional levels could be very influential in changing travel behavior. Specifically, the promotion of compact, mixed-use built environment with well-connected street networks reduces VMT and car ownership, resulting in less traffic congestion, air pollution, and energy consumption.
Resumo:
Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.