3 resultados para Urban Processes

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive archaeological investigation was undertaken on an urban backlot in Annapolis, Maryland. Fieldwork was conducted on behalf of Historic Annapolis Foundation for the property's owners, King and Cornwall, Inc. Supplemental documentary research, an evaluation of existing conditions on the property, and below-ground excavation of a 35 X 70 ft. urban backlot were conducted. While the project was not a Section 106 compliance effort, the field methods and rationale for the site's investigation are comparable to those of standard Phase II site evaluations. Historical documentation attested to the fact that the 22 West Street Backlot, located along the western most edge of the Historic District of Annapolis, Maryland, had seen development and occupation since the first quarter of the eighteenth century. A substantial brick structure was known to have occupied the property in a series of altered forms for much of that period. This structure served a variety of purposes over time: a private residence in the eighteenth century, a boarding house in the nineteenth century (known as the National Hotel), a duplex in the early twentieth century, half of which remained in use until the structure was entirely razed in the 1970s after destruction by fire. Recovery and analysis of site formation processes (i.e., both cultural and natural transformations of the buried remains) indicated that sections of the site were disturbed to a depth of six feet. In contrast to what initially seemed a poor prognosis for site integrity, other areas of the backlot revealed numerous intact historical features and deposits. Structural remains from the dwelling and its associated outbuildings, additions, and attendant trash deposits were recovered. What was initiated as a program of limited testing evolved into a larger-scale undertaking that made use of largely hand-excavated units in conjunction with machine-assisted stripping of areas demonstrated to contain from four to six-foot deep sterile layers of fill. The current investigations provided a window into a portion of the city and period in its history not documented archaeologically. Moreover, this project provided valuable insight into the archaeology of the homelot within a lightly industrialized, urban context. Evidence was recovered of shifts in the layout and arrangement of the houselot as well as changing relations between individuals and the workplace--all within an urban context--an issue defined elsewhere in the archaeological literature as a significant one. No further investigations are recommended for the site, however, further analysis and interpretation of materials recovered are ongoing. In the event that the site were to undergo development, monitoring of any construction activity is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 ± 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streams in urban areas often utilize channelization and other bank erosion control measures to improve flood conveyance, reduce channel migration, and overbank flooding. This leads to reductions in evapotranspiration and sediment storage on floodplains. The purpose of this study is to quantify the evapotranspiration and sediment transport capacity in the Anacostia Watershed, a large Coastal Plain urban watershed, and to compare these processes to a similar sized non-urban watershed. Times series data of hydrologic and hydraulic changes in the Anacostia, as urbanization progressed between 1939-2014, were also analyzed. The data indicates lower values of warm season runoff in the non-urban stream, suggesting a shift from evapotranspiration to runoff in urban streams. Channelization in the Anacostia also increased flow velocities and decreased high flow width. The high velocities associated with channelization and the removal of floodplain storage sites allows for the continued downstream transport of sediment despite stream bank stabilization.