2 resultados para Unification
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Humans use their grammatical knowledge in more than one way. On one hand, they use it to understand what others say. On the other hand, they use it to say what they want to convey to others (or to themselves). In either case, they need to assemble the structure of sentences in a systematic fashion, in accordance with the grammar of their language. Despite the fact that the structures that comprehenders and speakers assemble are systematic in an identical fashion (i.e., obey the same grammatical constraints), the two ‘modes’ of assembling sentence structures might or might not be performed by the same cognitive mechanisms. Currently, the field of psycholinguistics implicitly adopts the position that they are supported by different cognitive mechanisms, as evident from the fact that most psycholinguistic models seek to explain either comprehension or production phenomena. The potential existence of two independent cognitive systems underlying linguistic performance doubles the problem of linking the theory of linguistic knowledge and the theory of linguistic performance, making the integration of linguistics and psycholinguistic harder. This thesis thus aims to unify the structure building system in comprehension, i.e., parser, and the structure building system in production, i.e., generator, into one, so that the linking theory between knowledge and performance can also be unified into one. I will discuss and unify both existing and new data pertaining to how structures are assembled in understanding and speaking, and attempt to show that the unification between parsing and generation is at least a plausible research enterprise. In Chapter 1, I will discuss the previous and current views on how parsing and generation are related to each other. I will outline the challenges for the current view that the parser and the generator are the same cognitive mechanism. This single system view is discussed and evaluated in the rest of the chapters. In Chapter 2, I will present new experimental evidence suggesting that the grain size of the pre-compiled structural units (henceforth simply structural units) is rather small, contrary to some models of sentence production. In particular, I will show that the internal structure of the verb phrase in a ditransitive sentence (e.g., The chef is donating the book to the monk) is not specified at the onset of speech, but is specified before the first internal argument (the book) needs to be uttered. I will also show that this timing of structural processes with respect to the verb phrase structure is earlier than the lexical processes of verb internal arguments. These two results in concert show that the size of structure building units in sentence production is rather small, contrary to some models of sentence production, yet structural processes still precede lexical processes. I argue that this view of generation resembles the widely accepted model of parsing that utilizes both top-down and bottom-up structure building procedures. In Chapter 3, I will present new experimental evidence suggesting that the structural representation strongly constrains the subsequent lexical processes. In particular, I will show that conceptually similar lexical items interfere with each other only when they share the same syntactic category in sentence production. The mechanism that I call syntactic gating, will be proposed, and this mechanism characterizes how the structural and lexical processes interact in generation. I will present two Event Related Potential (ERP) experiments that show that the lexical retrieval in (predictive) comprehension is also constrained by syntactic categories. I will argue that the syntactic gating mechanism is operative both in parsing and generation, and that the interaction between structural and lexical processes in both parsing and generation can be characterized in the same fashion. In Chapter 4, I will present a series of experiments examining the timing at which verbs’ lexical representations are planned in sentence production. It will be shown that verbs are planned before the articulation of their internal arguments, regardless of the target language (Japanese or English) and regardless of the sentence type (active object-initial sentence in Japanese, passive sentences in English, and unaccusative sentences in English). I will discuss how this result sheds light on the notion of incrementality in generation. In Chapter 5, I will synthesize the experimental findings presented in this thesis and in previous research to address the challenges to the single system view I outlined in Chapter 1. I will then conclude by presenting a preliminary single system model that can potentially capture both the key sentence comprehension and sentence production data without assuming distinct mechanisms for each.
Resumo:
The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.