3 resultados para Two-hybrid
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Gemstone Team FISH
Resumo:
The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.