2 resultados para Turning lanes.
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Bicycling as an active mode of transport can offer great individual and societal benefits. Allocating space for bicycle facilities is the key to promoting cycling as bicyclists perceive better safety and convenience in separate bikeways. In this thesis, a method is proposed for optimizing the selection and scheduling of capacity enhancements in road networks while also optimizing the allocation of road space to bicycle lanes. The goal is to determine what fraction of the available space should be allocated to bicycles, as the network evolves, in order to minimize the present value of the total cost of the system cost. The allocation method is combined with a genetic algorithm to select and schedule road expansion projects under certain budget constraints.
Resumo:
This dissertation verifies whether the following two hypotheses are true: (1) High-occupancy/toll lanes (and therefore other dedicated lanes) have capacity that could still be used; (2) such unused capacity (or more precisely, “unused managed capacity”) can be sold successfully through a real-time auction. To show that the second statement is true, this dissertation proposes an auction-based metering (ABM) system, that is, a mechanism that regulates traffic that enters the dedicated lanes. Participation in the auction is voluntary and can be skipped by paying the toll or by not registering to the new system. This dissertation comprises the following four components: a measurement of unused managed capacity on an existing HOT facility, a game-theoretic model of an ABM system, an operational description of the ABM system, and a simulation-based evaluation of the system. Some other and more specific contributions of this dissertation include the following: (1) It provides a definition and a methodology for measuring unused managed capacity and another important variable referred as “potential volume increase”. (2) It proves that the game-theoretic model has a unique Bayesian Nash equilibrium. (3) And it provides a specific road design that can be applied or extended to other facilities. The results provide evidence that the hypotheses are true and suggest that the ABM system would benefit a public operator interested in reducing traffic congestion significantly, would benefit drivers when making low-reliability trips (such as work-to-home trips), and would potentially benefit a private operator interested in raising revenue.