2 resultados para Treatment performance
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Causal inference with a continuous treatment is a relatively under-explored problem. In this dissertation, we adopt the potential outcomes framework. Potential outcomes are responses that would be seen for a unit under all possible treatments. In an observational study where the treatment is continuous, the potential outcomes are an uncountably infinite set indexed by treatment dose. We parameterize this unobservable set as a linear combination of a finite number of basis functions whose coefficients vary across units. This leads to new techniques for estimating the population average dose-response function (ADRF). Some techniques require a model for the treatment assignment given covariates, some require a model for predicting the potential outcomes from covariates, and some require both. We develop these techniques using a framework of estimating functions, compare them to existing methods for continuous treatments, and simulate their performance in a population where the ADRF is linear and the models for the treatment and/or outcomes may be misspecified. We also extend the comparisons to a data set of lottery winners in Massachusetts. Next, we describe the methods and functions in the R package causaldrf using data from the National Medical Expenditure Survey (NMES) and Infant Health and Development Program (IHDP) as examples. Additionally, we analyze the National Growth and Health Study (NGHS) data set and deal with the issue of missing data. Lastly, we discuss future research goals and possible extensions.
Resumo:
Despite the organizational benefits of treating employees fairly, both anecdotal and empirical evidence suggest that managers do not behave fairly towards their employees in a consistent manner. As treating employees fairly takes up personal resources such as time, effort, and attention, I argue that when managers face high workloads (i.e., high amounts of work and time pressure), they are unable to devote such personal resources to effectively meet both core technical task requirements and treat employees fairly. I propose that in general, managers tend to view their core technical task performance as more important than being fair in their dealings with employees; as a result, when faced with high workloads, they tend to prioritize the former at the expense of the latter. I also propose that managerial fairness will suffer more as a result of heightened workloads than will core technical task performance, unless managers perceive their organization to explicitly reward fair treatment of employees. I find support for my hypotheses across three studies: two experimental studies (with online participants and students respectively) and one field study of managers from a variety of organizations. I discuss the implications of studying fairness in the wider context of managers’ complex role in organizations to the fairness and managerial work demands literatures.