2 resultados para Transmission of data flow model driven development
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer rates and have been identified as a most promising technology for integration into compact cold plates. Unfortunately, the absence of phenomenological insights and physical models hinders the extrapolation of grooved-tube performance to new applications. The success of regime-based heat transfer correlations for smooth tubes has motivated the current effort to explore the relationship between flow regimes and enhanced heat transfer in internally-grooved tubes. In this thesis, a detailed analysis of smooth and internally-grooved tube data reveals that performance improvement in internally-grooved tubes at low-to-intermediate mass flux is a result of early flow regime transition. Based on this analysis, a new flow regime map and corresponding heat transfer coefficient correlation, which account for the increased wetted angle, turbulence, and Gregorig effects unique to internally-grooved tubes, were developed. A two-phase test facility was designed and fabricated to validate the newly-developed flow regime map and regime-based heat transfer coefficient correlation. As part of this setup, a non-intrusive optical technique was developed to study the dynamic nature of two-phase flows. It was found that different flow regimes result in unique temporally varying film thickness profiles. Using these profiles, quantitative flow regime identification measures were developed, including the ability to explain and quantify the more subtle transitions that exist between dominant flow regimes. Flow regime data, based on the newly-developed method, and heat transfer coefficient data, using infrared thermography, were collected for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities approaching 1. In total, over 6500 combined data points for the adiabatic and diabatic smooth and internally-grooved tubes were acquired. Based on results from the experiments and a reinterpretation of data from independent researchers, it was established that heat transfer enhancement in internally-grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime transition to Annular flow. The regime-based heat transfer coefficient outperformed empirical correlations from the literature, with mean and absolute deviations of 4.0% and 32% for the full range of data collected.
Resumo:
Students often receive instruction from specialists, professionals other than their general educators, such as special educators, reading specialists, and ESOL (English Speakers of Other Languages) teachers. The purpose of this study was to examine how general educators and specialists develop collaborative relationships over time within the context of receiving professional development. While collaboration is considered essential to increasing student achievement, improving teachers’ practice, and creating comprehensive school reform, collaborative partnerships take time to develop and require multiple sources of support. Additionally, both practitioners and researchers often conflate collaboration with structural reforms such as co-teaching. This study used a retrospective single case study with a grounded theory approach to analysis. Data were collected through semi-structured interviews with thirteen teachers and an administrator after three workshops were conducted throughout the school year. The theory, Cultivating Interprofessional Collaboration, describes how interprofessional relationships grow as teachers engage in a cycle of learning, constructing partnership, and reflecting. As relationships deepen some partners experience a seamless dimension to their work. A variety of intrapersonal, interpersonal, and external factors work in concert to promote this growth, which is strengthened through professional development. In this theory, professional development provides a common ground for strengthening relationships, knowledge about the collaborative process, and a reflective space to create new collaborative practices. Effective collaborative practice can lead to aligned instruction and teachers’ own professional growth. This study has implications for school interventions, professional development, and future research on collaboration in schools.