3 resultados para Traction-Gripper

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of patient activation has gained traction as the term referring to patients who understand their role in the care process and have “the knowledge, skills and confidence” necessary to manage their illness over time (Hibbard & Mahoney, 2010). Improving health outcomes for vulnerable and underserved populations who bear a disproportionate burden of health disparities presents unique challenges for nurse practitioners who provide primary care in nurse-managed health centers. Evidence that activation improves patient self-management is prompting the search for theory-based self-management support interventions to activate patients for self-management, improve health outcomes, and sustain long-term gains. Yet, no previous studies investigated the relationship between Self-determination Theory (SDT; Deci & Ryan, 2000) and activation. The major purpose of this study, guided by the Triple Aim (Berwick, Nolan, & Whittington, 2008) and nested in the Chronic Care Model (Wagner et al., 2001), was to examine the degree to which two constructs– Autonomy Support and Autonomous Motivation– independently predicted Patient Activation, controlling for covariates. For this study, 130 nurse-managed health center patients completed an on-line 38-item survey onsite. The two independent measures were the 6-item Modified Health Care Climate Questionnaire (mHCCQ; Williams, McGregor, King, Nelson, & Glasgow, 2005; Cronbach’s alpha =0.89) and the 8-item adapted Treatment Self-Regulation Questionnaire (TSRQ; Williams, Freedman, & Deci, 1998; Cronbach’s alpha = 0.80). The Patient Activation Measure (PAM-13; Hibbard, Mahoney, Stock, & Tusler, 2005; Cronbach’s alpha = 0.89) was the dependent measure. Autonomy Support was the only significant predictor, explaining 19.1% of the variance in patient activation. Five of six autonomy support survey items regressed on activation were significant, illustrating autonomy supportive communication styles contributing to activation. These results suggest theory-based patient, provider, and system level interventions to enhance self-management in primary care and educational and professional development curricula. Future investigations should examine additional sources of autonomy support and different measurements of autonomous motivation to improve the predictive power of the model. Longitudinal analyses should be conducted to further understand the relationship between autonomy support and autonomous motivation with patient activation, based on the premise that patient activation will sustain behavior change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.