2 resultados para Total available market

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation provides a novel theory of securitization based on intermediaries minimizing the moral hazard that insiders can misuse assets held on-balance sheet. The model predicts how intermediaries finance different assets. Under deposit funding, the moral hazard is greatest for low-risk assets that yield sizable returns in bad states of nature; under securitization, it is greatest for high-risk assets that require high guarantees and large reserves. Intermediaries thus securitize low-risk assets. In an extension, I identify a novel channel through which government bailouts exacerbate the moral hazard and reduce total investment irrespective of the funding mode. This adverse effect is stronger under deposit funding, implying that intermediaries finance more risky assets off-balance sheet. The dissertation discusses the implications of different forms of guarantees. With explicit guarantees, banks securitize assets with either low information-intensity or low risk. By contrast, with implicit guarantees, banks only securitize assets with high information-intensity and low risk. Two extensions to the benchmark static and dynamic models are discussed. First, an extension to the static model studies the optimality of tranching versus securitization with guarantees. Tranching eliminates agency costs but worsens adverse selection, while securitization with guarantees does the opposite. When the quality of underlying assets in a certain security market is sufficiently heterogeneous, and when the highest quality assets are perceived to be sufficiently safe, securitization with guarantees dominates tranching. Second, in an extension to the dynamic setting, the moral hazard of misusing assets held on-balance sheet naturally gives rise to the moral hazard of weak ex-post monitoring in securitization. The use of guarantees reduces the dependence of banks' ex-post payoffs on monitoring efforts, thereby weakening monitoring incentives. The incentive to monitor under securitization with implicit guarantees is the weakest among all funding modes, as implicit guarantees allow banks to renege on their monitoring promises without being declared bankrupt and punished.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.