4 resultados para Time and space

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these manipulators experience efficiency losses when operated outside their target performance ranges. The unidirectional actuation behavior of a miniature PAM bundle and bidirectional actuation behavior of an antagonistic pair of miniature PAM bundles are characterized and modeled. The results are used to motivate the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle to improve the operating efficiency of the actuator. Additionally, the fabrication and quasi-static testing results for PAMs assembled from candidate space qualified bladder and braided sleeve materials for use in space robotics are assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report details the archaeology completed at Reynolds Tavern in the years 1982,1983, and 1984. It was completed in 2013, nearly 30 years after the excavation took place, using archival materials such as the draft interim reports, unit summary forms, original notes and photographs which are currently stored in the University Archives at Hornbake Library, at the University of Maryland, College Park. This report has been a collaboration across time and space, drawing from preliminary reports written by Anne Yenstch and Susan Mira in 1982 and Joe Dent and Beth Ford in 1983, as well as original notes from students of the field schools held there during those years, various analyses by scholars from many universities (including the University of Maryland, University of Georgia, and the College of William and Mary), and historical research by Nancy Baker. Thomas Cuddy began the writing of this report in 2002, completing the first three chapters in addition to the artifact analysis that led to the postexcavation identification of the African bundles in the Reynolds Tavern basement. This remarkable discovery was made along with Mark Leone of the University of Maryland, founder and director of Archaeology in Annapolis, who also served as the Principle Investigator during all three years of the Reynolds Tavern excavations. Dr. Leone contributed the fifth and final chapter to this report, the Conclusions and Recommendations, during its final compilation in 2013. The final report, including the fourth chapter on the archaeology itself, was written in part and compiled by Patricia Markert of the University of Maryland in the spring of 2013. Reynolds Tavern has been part of the landscape of Annapolis for two-hundred and fifty five years (at the time of the publication of this report). It sits on Church Circle facing St. Anne’s Church, and is a beautiful example of 18th century Georgian architecture as well one of the defining features of Historic Annapolis today. It currently operates as a popular restaurant and pub, but has served variously as a hat shop, a tavern, an inn, a library and a bank over time, among other things. Its long history contributes to its significance as an archaeological site, and also as a historic marker in present day Annapolis. The archaeology conducted at Reynolds Tavern shed light on life in 18th and 19th century Annapolis, illuminating details of the occupants’ lives through the material traces they left behind. These include an 18th century cobblestone road that ran diagonally through the Tavern’s yard, telling of the movement through early Annapolis; a large and intact well, which was found ii to contain a 19 foot wooden pipe; a large, ovular privy containing many of the objects used on a day to day basis at the Tavern or the structures around it; a subterranean brick storage feature in the basement of the Tavern, which may have been used by Reynolds during his days operating a hat shop; and also in the basement, two African caches of objects, providing a glimpse into West African spiritual practices alive in historic Annapolis and the presence of African American individuals at the Tavern in the 18th and 19th centuries. The purpose of this report is to detail these archaeological investigations and their findings, so that a public record will be available and the archaeology completed at Reynolds Tavern can continue to contribute to the history of Annapolis.