2 resultados para Tilted-time window model

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large component-based systems are often built from many of the same components. As individual component-based software systems are developed, tested and maintained, these shared components are repeatedly manipulated. As a result there are often significant overlaps and synergies across and among the different test efforts of different component-based systems. However, in practice, testers of different systems rarely collaborate, taking a test-all-by-yourself approach. As a result, redundant effort is spent testing common components, and important information that could be used to improve testing quality is lost. The goal of this research is to demonstrate that, if done properly, testers of shared software components can save effort by avoiding redundant work, and can improve the test effectiveness for each component as well as for each component-based software system by using information obtained when testing across multiple components. To achieve this goal I have developed collaborative testing techniques and tools for developers and testers of component-based systems with shared components, applied the techniques to subject systems, and evaluated the cost and effectiveness of applying the techniques. The dissertation research is organized in three parts. First, I investigated current testing practices for component-based software systems to find the testing overlap and synergy we conjectured exists. Second, I designed and implemented infrastructure and related tools to facilitate communication and data sharing between testers. Third, I designed two testing processes to implement different collaborative testing algorithms and applied them to large actively developed software systems. This dissertation has shown the benefits of collaborative testing across component developers who share their components. With collaborative testing, researchers can design algorithms and tools to support collaboration processes, achieve better efficiency in testing configurations, and discover inter-component compatibility faults within a minimal time window after they are introduced.