4 resultados para Threshold crypto-graphic schemes and algorithms

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last two decades, experimental progress in controlling cold atoms and ions now allows us to manipulate fragile quantum systems with an unprecedented degree of precision. This has been made possible by the ability to isolate small ensembles of atoms and ions from noisy environments, creating truly closed quantum systems which decouple from dissipative channels. However in recent years, several proposals have considered the possibility of harnessing dissipation in open systems, not only to cool degenerate gases to currently unattainable temperatures, but also to engineer a variety of interesting many-body states. This thesis will describe progress made towards building a degenerate gas apparatus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein condensate (BEC) of rubidium atoms which will act as a bath. Here we describe the challenges encountered in making a degenerate mixture of rubidium and ytterbium atoms and present two experiments performed on the path to creating a controllable open quantum system. The first experiment will describe the measurement of a tune-out wavelength where the light shift of $\Rb{87}$ vanishes. This wavelength was used to create a species-selective trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed us to extract the dipole matrix element of the $5s \rightarrow 6p$ transition in $\Rb{87}$ with an extraordinary degree of precision. Our method to extract matrix elements has found use in atomic clocks where precise knowledge of transition strengths is necessary to account for minute blackbody radiation shifts. The second experiment will present the first realization of a degenerate Bose-Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap (ODT), we were able to create a highly-tunable, species-selective potential for rubidium and ytterbium atoms which allowed us to use $\Rb{87}$ to sympathetically cool $\Yb{171}$ to degeneracy with minimal loss. This mixture is the first milestone creating the lattice-bath system and will soon be used to implement novel cooling schemes and explore the rich physics of dissipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.