2 resultados para Three-phase Integrated Inverter

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the summer of 1994, Archaeology in Annapolis conducted archaeological investigations of the city block bounded by Franklin, South and Cathedral Streets in the city of Annapolis. This Phase III excavation was conducted as a means to identify subsurface cultural resources in the impact area associated with the proposed construction of the Anne Arundel County Courthouse addition. This impact area included both the upper and lower parking lots used by Courthouse employees. Investigations were conducted in the form of mechanical trenching and hand excavated units. Excavations in the upper lot area yielded significant information concerning the interior area of the block. Known as Bellis Court, this series of rowhouses was constructed in the late nineteenth century and was used as rental properties by African-Americans. The dwellings remained until the middle of the twentieth century when they were demolished in preparation for the construction of a Courthouse addition. Portions of the foundation of a house owned by William H. Bellis in the 1870s were also exposed in this area. Construction of this house was begun by William Nicholson around 1730 and completed by Daniel Dulany in 1732/33. It was demolished in 1896 by James Munroe, a Trustee for Bellis. Excavations in the upper lot also revealed the remains of a late seventeenth/early eighteenth century wood-lined cellar, believed to be part of the earliest known structure on Lot 58. After an initially rapid deposition of fill around 1828, this cellar was gradually covered with soil throughout the remainder of the nineteenth century. The fill deposit in the cellar feature yielded a mixed assemblage of artifacts that included sherds of early materials such as North Devon gravel-tempered earthenware, North Devon sgraffito and Northem Italian slipware, along with creamware, pearlware and whiteware. In the lower parking lot, numerous artifacts were recovered from yard scatter associated with the houses that at one time fronted along Cathedral Street and were occupied by African- Americans. An assemblage of late seventeenth century/early eighteenth century materials and several slag deposits from an early forge were recovered from this second area of study. The materials associated with the forge, including portions of a crucible, provided evidence of some of the earliest industry in Annapolis. Investigations in both the upper and lower parking lots added to the knowledge of the changing landscape within the project area, including a prevalence of open space in early periods, a surprising survival of impermanent structures, and a gradual regrading and filling of the block with houses and interior courts. Excavations at the Anne Arundel County Courthouse proved this to be a multi-component site, rich in cultural resources from Annapolis' Early Settlement Period through its Modern Period (as specified by Maryland's Comprehensive Historic Preservation Plan (Weissman 1986)). This report provides detailed interpretations of the archaeological findings of these Phase III investigations.