2 resultados para Tall buildings -- Environmental engineering

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel slag is a byproduct of iron and steel production by the metallurgical industries. Annually, 21 million tons of steel slag is produced in the United States. Most of the slag is landfilled, which represents a significant economic loss and a waste of valuable land space. Steel slag has great potential for the construction of highway embankments; however, its use has been limited due to its high swelling potential and alkalinity. The swelling potential of steel slags may lead to deterioration of the structural stability of highways, and high alkalinity poses an environmental challenge as it affects the leaching behavior of trace metals. This study seeks a methodology that promotes the use of steel slag in highway embankments by minimizing these two main disadvantages. Accelerated swelling tests were conducted to evaluate the swelling behavior of pure steel slag and water treatment residual (WTR) treated steel slag, where WTR is an alum-rich by-product of drinking water treatment plants. Sequential batch tests and column leach tests, as well as two different numerical analyses, UMDSurf and WiscLEACH, were carried out to check the environmental suitability of the methods. Tests were conducted to study the effect of a common borrow fill material that encapsulated the slag in the embankment and the effects of two subgrade soils on the chemical properties of slag leachate. The results indicated that an increase in WTR content in the steel slag-WTR mixtures yields a decrease in pH and most of the leached metal concentrations, except aluminum. The change in the levels of pH, after passing through encapsulation and subgrade, depends on the natural pHs of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.