2 resultados para TIROS satellites

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In stable solar systems, planets remain in nearly elliptical orbits around their stars. Over longer timescales, however, their orbital shapes and sizes change due to mutual gravitational perturbations. Orbits of satellites around a planet vary for the same reason. Because of their interactions, the orbits of planets and satellites today are different from what they were earlier. In order to determine their original orbits, which are critical constraints on formation theories, it is crucial to understand how orbits evolve over the age of the Solar System. Depending on their timescale, we classify orbital interactions as either short-term (orbital resonances) or long-term (secular evolution). My work involves examples of both interaction types. Resonant history of the small Neptunian satellites In satellite systems, tidal migration brings satellite orbits in and out of resonances. During a resonance passage, satellite orbits change dramatically in a very short period of time. We investigate the resonant history of the six small Neptunian moons. In this unique system, the exotic orbit of the large captured Triton (with a circular, retrograde, and highly tilted orbit) influences the resonances among the small satellites very strongly. We derive an analytical framework which can be applied to Neptune's satellites and to similar systems. Our numerical simulations explain the current orbital tilts of the small satellites as well as constrain key physical parameters of both Neptune and its moons. Secular orbital interactions during eccentricity damping Long-term periodic changes of orbital shape and orientation occur when two or more planets orbit the same star. The variations of orbital elements are superpositions of the same number of fundamental modes as the number of planets in the system. We investigate how this effect interacts with other perturbations imposed by external disturbances, such as the tides and relativistic effects. Through analytical studies of a system consisting of two planets, we find that an external perturbation exerted on one planet affects the other indirectly. We formulate a general theory for how both orbits evolve in response to an arbitrary externally-imposed slow change in eccentricity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellites have great potential for diagnosis of surface air quality conditions, though reduced sensitivity of satellite instrumentation to the lower troposphere currently impedes their applicability. One objective of the NASA DISCOVER-AQ project is to provide information relevant to improving our ability to relate satellite-observed columns to surface conditions for key trace gases and aerosols. In support of DISCOVER-AQ, this dissertation investigates the degree of correlation between O3 and NO2 column abundance and surface mixing ratio during the four DISCOVER-AQ deployments; characterize the variability of the aircraft in situ and model-simulated O3 and NO2 profiles; and use the WRF-Chem model to further investigate the role of boundary layer mixing in the column-surface connection for the Maryland 2011 deployment, and determine which of the available boundary layer schemes best captures the observations. Simple linear regression analyses suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere may be most meaningful for surface air quality under the conditions associated with the Maryland 2011 campaign, which included generally deep, convective boundary layers, the least wind shear of all four deployments, and few geographical influences on local meteorology, with exception of bay breezes. Hierarchical clustering analysis of the in situ O3 and NO2 profiles indicate that the degree of vertical mixing (defined by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the column vs. surface correlations for many clusters for both O3 and NO2. However, comparisons to the CMAQ model suggest that, among other errors, vertical mixing is overestimated, causing too great a column-surface connection within the model. Finally, the WRF-Chem model, a meteorology model with coupled chemistry, is used to further investigate the impact of vertical mixing on the O3 and NO2 column-surface connection, for an ozone pollution event that occurred on July 26-29, 2011. Five PBL schemes were tested, with no one scheme producing a clear, consistent “best” comparison with the observations for PBLH and pollutant profiles; however, despite improvements, the ACM2 scheme continues to overestimate vertical mixing.