2 resultados para Synthetic control matching
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In this dissertation I study the development of urban areas. At the aggregate level I investigate how they may be affected by climate change policies and by being designated the seat of governmental power. At the household level I study with coauthors how microfinance could improve the health of urban residents. In Chapter 1, I investigate how local employment may be affected by electricity price increases, which is a likely consequence of climate change policies. I outline how previous studies that find large, negative effects may be biased. To overcome these biases I develop a novel estimation strategy that blends border-pair regressions with the synthetic control methodology. I show the conditions for consistent estimation. Using this estimator, I find no effect of contemporaneous price changes on employment. Consistent with the longer time-frame for manufacturing decisions, I do find evidence for negative effects from perceived permanent price shocks. These estimates are much smaller than previous research has found. National capital cities are often substantially larger than other cities in their countries. In Chapter 2, I investigate whether there is a causal effect from being a capital by studying the 1960 relocation of the Brazilian capital from Rio de Janeiro to Brasília. Using a synthetic controls strategy I find that losing the capital had no significant effects on Rio de Janeiro in terms of population, employment, or gross domestic product (GDP). I find that Brasília experienced large and significant increases in population, employment, and GDP. I find evidence of large spillovers from the public to the private sector. Chapter 3 investigates how microfinance could increase the uptake of costly health goods. We study the effect of time payments (micro-loans or micro-savings) on willingness-to-pay (WTP) for a water filter among households in the slums of Dhaka, Bangladesh. We find that time payments significantly increase WTP: compared to a lump-sum up-front purchase, median WTP increases 83% with a six-month loan and 115% with a 12-month loan. We find that households are quite patient with respect to consumption of health inputs. We find evidence for the presence of credit and savings constraints.
Resumo:
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70\% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.