4 resultados para Symbolism of numbers--Religious aspects--Islam

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent popularity of the IEEE 802.11b Wireless Local Area Networks (WLANs) in a host of current-day applications has instigated a suite of research challenges. The 802.11b WLANs are highly reliable and wide spread. In this work, we study the temporal characteristics of RSSI in the real-working environment by conducting a controlled set of experiments. Our results indicate that a significant variability in the RSSI can occur over time. Some of this variability in the RSSI may be due to systematic causes while the other component can be expressed as stochastic noise. We present an analysis of both these aspects of RSSI. We treat the moving average of the RSSI as the systematic causes and the noise as the stochastic causes. We give a reasonable estimate for the moving average to compute the noise accurately. We attribute the changes in the environment such as the movement of people and the noise associated with the NIC circuitry and the network access point as causes for this variability. We find that the results of our analysis are of primary importance to active research areas such as location determination of users in a WLAN. The techniques used in some of the RF-based WLAN location determination systems, exploit the characteristics of the RSSI presented in this work to infer the location of a wireless client in a WLAN. Thus our results form the building blocks for other users of the exact characteristics of the RSSI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the role of architecture as a means of reconnecting humans to the passage of time. A neglect of the temporal in our built environment obscures understanding of the human condition in all of its sensory aspects. The exploration and design of a series of ritual engagements, both culturally, and architecturally, begin to offer a venue through which designers can engage human senses. Rituals act as a means of demarcating the passage of time. It is through the engagement with these moments that people can begin to gain a richer understanding of the ephemeral nature of their own existence. The Pritzker Architecture Prize serves as the selected ritual of exploration because of its celebration of humanity and the art of architecture. However, the notion of ritual is explored down to the level of detail of engagement with handrails and door handles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study examined the frequency and quality of how 3- to 4-year-old children and their parents explore the relations between symbolic and non-symbolic quantities in the context of a playful math experience, as well as the role of both parent and child factors in this exploration. Preschool children’s numerical knowledge was assessed while parents completed a survey about the number-related experiences they share with their children at home, and their math-related beliefs. Parent-child dyads were then videotaped playing a modified version of the card game War. Results suggest that parents and children explored quantity explicitly on only half of the cards and card pairs played, and dyads of young children and those with lower number knowledge tended to be most explicit in their quantity exploration. Dyads with older children, on the other hand, often completed their turns without discussing the numbers at all, likely because they were knowledgeable enough about numbers that they could move through the game with ease. However, when dyads did explore the quantities explicitly, they focused on identifying numbers symbolically, used non-symbolic card information interchangeably with symbolic information to make the quantity comparison judgments, and in some instances, emphasized the connection between the symbolic and non-symbolic number representations on the cards. Parents reported that math experiences such as card game play and quantity comparison occurred relatively infrequently at home compared to activities geared towards more foundational practice of number, such as counting out loud and naming numbers. However, parental beliefs were important in predicting both the frequency of at-home math engagement as well as the quality of these experiences. In particular, parents’ specific beliefs about their children’s abilities and interests were associated with the frequency of home math activities, while parents’ math-related ability beliefs and values along with children’s engagement in the card game were associated with the quality of dyads’ number exploration during the card game. Taken together, these findings suggest that card games can be an engaging context for parent-preschooler exploration of numbers in multiple representations, and suggests that parents’ beliefs and children’s level of engagement are important predictors of this exploration.