2 resultados para Surface Energy
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The surge of interest in graphene, as epitomized by the Nobel Prize in Physics in 2010, is attributed to its extraordinary properties. Graphene is ultrathin, mechanically tough, and has amendable surface chemistry. These features make graphene and graphene based nanostructure an ideal candidate for the use of molecular mass manipulation. The controllable and programmable molecular mass manipulation is crucial in enabling future graphene based applications, however is challenging to achieve. This dissertation studies several aspects in molecular mass manipulation including mass transportation, patterning and storage. For molecular mass transportation, two methods based on carbon nanoscroll are demonstrated to be effective. They are torsional buckling instability assisted transportation and surface energy induced radial shrinkage. To achieve a more controllable transportation, a fundamental law of direction transport of molecular mass by straining basal graphene is studied. For molecular mass patterning, we reveal a barrier effect of line defects in graphene, which can enable molecular confining and patterning in a domain of desirable geometry. Such a strategy makes controllable patterning feasible for various types of molecules. For molecular mass storage, we propose a novel partially hydrogenated bilayer graphene structure which has large capacity for mass uptake. Also the mass release can be achieved by simply stretching the structure. Therefore the mass uptake and release is reversible. This kind of structure is crucial in enabling hydrogen fuel based technology. Lastly, spontaneous nanofluidic channel formation enabled by patterned hydrogenation is studied. This novel strategy enables programmable channel formation with pre-defined complex geometry.
Resumo:
Magnetic nanoparticles (MNPs) are known for the unique properties conferred by their small size and have found wide application in food safety analyses. However, their high surface energy and strong magnetization often lead to aggregation, compromising their functions. In this study, iron oxide magnetic particles (MPs) over the range of nano to micro size were synthesized, from which particles with less aggregation and excellent magnetic properties were obtained. MPs were synthesized via three different hydrothermal procedures, using poly (acrylic acid) (PAA) of different molecular weight (Mw) as the stabilizer. The particle size, morphology, and magnetic properties of the MPs from these synthesis procedures were characterized and compared. Among the three syntheses, one-step hydrothermal synthesis demonstrated the highest yield and most efficient magnetic collection of the resulting PAA-coated magnetic microparticles (PAA-MMPs, >100 nm). Iron oxide content of these PAA-MMPs was around 90%, and the saturation magnetization ranged from 70.3 emu/g to 57.0 emu/g, depending on the Mw of PAA used. In this approach, the particles prepared using PAA with Mw of 100K g/mol exhibited super-paramagnetic behavior with ~65% lower coercivity and remanence compared to others. They were therefore less susceptible to aggregation and remained remarkably water-dispersible even after one-month storage. Three applications involving PAA-MMPs from one-step hydrothermal synthesis were explored: food proteins and enzymes immobilization, antibody conjugation for pathogen capture, and magnetic hydrogel film fabrication. These studies demonstrated their versatile functions as well as their potential applications in the food science area.