2 resultados para Structural reliability

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation demonstrates an explanation of damage and reliability of critical components and structures within the second law of thermodynamics. The approach relies on the fundamentals of irreversible thermodynamics, specifically the concept of entropy generation due to materials degradation as an index of damage. All failure mechanisms that cause degradation, damage accumulation and ultimate failure share a common feature, namely energy dissipation. Energy dissipation, as a fundamental measure for irreversibility in a thermodynamic treatment of non-equilibrium processes, leads to and can be expressed in terms of entropy generation. The dissertation proposes a theory of damage by relating entropy generation to energy dissipation via generalized thermodynamic forces and thermodynamic fluxes that formally describes the resulting damage. Following the proposed theory of entropic damage, an approach to reliability and integrity characterization based on thermodynamic entropy is discussed. It is shown that the variability in the amount of the thermodynamic-based damage and uncertainties about the parameters of a distribution model describing the variability, leads to a more consistent and broader definition of the well know time-to-failure distribution in reliability engineering. As such it has been shown that the reliability function can be derived from the thermodynamic laws rather than estimated from the observed failure histories. Furthermore, using the superior advantages of the use of entropy generation and accumulation as a damage index in comparison to common observable markers of damage such as crack size, a method is proposed to explain the prognostics and health management (PHM) in terms of the entropic damage. The proposed entropic-based damage theory to reliability and integrity is then demonstrated through experimental validation. Using this theorem, the corrosion-fatigue entropy generation function is derived, evaluated and employed for structural integrity, reliability assessment and remaining useful life (RUL) prediction of Aluminum 7075-T651 specimens tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Happier employees are more productive. Organizations across industry, no doubt, try to improve their employees’ happiness with the objective to achieve higher profitability and company value. While this issue has drawn increasing attention in high tech and other industries, little is known about the happiness of project management professionals. More research is needed to explore the current situation of workplace happiness of project management professionals and the driving factors behind it. This thesis explores the workplace happiness (subjective well-being) of project management professionals based on the exploratory statistical analysis of a survey 225 professionals in the state of Maryland, conducted in October 2014. The thesis applies Structural Equation Modeling and multiple regression analysis to the dataset and shows no significant impact of gender, age, work experience, and some other demographic traits on workplace happiness, also named well-being. Statistically significant factors for workplace happiness include: creating pleasant work environment, promoting open organization and well-managed team, and good organization to work for. With respect to the reliability of self-reporting, the study finds that the comprehensive appraisal tool designed by Happiness Works and New Economics Foundation can give a more reliable happiness evaluation. Two key factors, i.e. career perspectives and free to be self, can help alleviate the overconfidence of workplace happiness.